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Summary: Non-invasive marks, including pigmentation patterns, acquired scars,and genetic mark-

ers, are often used to identify individuals in mark-recapture experiments. If animals in a population

can be identified from multiple, non-invasive marks then some individuals may be counted twice in

the observed data. Analyzing the observed histories without accounting for these errors will provide

incorrect inference about the population dynamics. Previous approaches to this problem include

modeling data from only one mark and combining estimators obtained from each mark separately

assuming that they are independent. Motivated by the analysis of data from the ECOCEAN online

whale shark (Rhincodon typus) catalog, we describe a Bayesian method to analyze data from multiple,

non-invasive marks that is based on the latent-multinomial model of Link et al. (2010). Further to

this, we describe a simplification of the Markov chain Monte Carlo algorithm of Link et al. (2010)

that leads to more efficient computation. We present results from the analysis of the ECOCEAN

whale shark data and from simulation studies comparing our method with the previous approaches.
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1. Introduction5

Non-invasive marks (also called natural marks) include patterns in pigmentation, genetic6

markers, acquired scars, or other natural characertistics that allow researchers to identify7

individuals in a population without physical capture. Visible marks have long been used to8

identify individuals of some species that are hard to tag, particularly marine mammals, and9

non-invasive marks are now being used more widely. Yoshizaki et al. (2009) and Yoshizaki10

et al. (2011) reference studies including:11

• studies based on photographs of large cats (cheetahs, snow leopards, and tigers),12

• scar patterns on marine mammals (manatees and whales),13

• skin patterns of reptiles and amphibians (snakes, crocodiles, and salamanders),14

• and genetic marks in various species (bears, wombats, and whales).15

The primary advantage of non-invasive marks over man-made marks is that they can often16

be observed from a distance or through the collection of secondary material (e.g. hair samples17

or scat). This means that individuals can be identified passively without physical contact.18

Further, many non-invasive marks allow every individual in the population to be identified19

from birth. However, mark-recapture data collected from non-invasive marks can present20

several modeling challenges. Previous statistical developments have considered that non-21

invasive marks may be misidentified at non-negligible rates (Lukacs and Burnham, 2005;22

Wright et al., 2009; Yoshizaki et al., 2011), that individuals’ marks may change over time23

(Yoshizaki et al., 2009), and that some non-invasive marks (e.g scar patterns) may be24

restricted to a subset of the population (Da-Silva et al., 2003; Da-Silva, 2006). We consider25

the problem of modeling the demographics of a population from mark-recapture data when26

individuals have been identified from multiple, non-invasive marks.27

The specific application we consider concerns modeling the aggregation of whale sharks28

(Rhincodon typus) in Ningaloo Marine Park (NMP), off the west coast of Australia. Whale29
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sharks aggregate at NMP each year between April and July. During this time, whale sharks30

are located by tour companies and photographs are taken by tourists and tour operators31

who upload their images to the online ECOCEAN whale shark library. Whale sharks can32

be identified by the unique pattern of spots on their flanks, and computer assisted methods33

are used to match photographs in the library. Matches are then used to generate capture34

histories which provide information about the timing of the sharks’ arrival and departure35

from NMP and their survival across years (see Holmberg et al., 2009, for further details).36

The challenge in modeling this data is that sharks may be photographed from either the37

left or the right side, but the spot patterns are not the same. This means that photographs38

from the two sides of a shark cannot be matched without further information. In particular,39

the spot patterns on the right and left can only be matched if the shark was photographed40

from both sides during one encounter or more. If this has not happened then photographs41

of the same shark taken from different sides on different occasions cannot be linked and42

the shark will contribute two separate histories to the observed data. Ignoring this problem43

and naively modeling the observed encounter histories will inflate the apparent number44

of sharks identified and create dependence between the encounter histories. This violates45

a key assumption of most mark-recapture models. One solution is to construct encounter46

histories based on photographs from either the left or right side alone, but this removes47

information from the data. As an alternative, Wilson et al. (1999, pg. 294) suggests combining48

inferences obtained from left- and right-side photographs of bottlenose dolphins by averaging49

separate point estimates and computing standard errors assuming that these estimates are50

independent. The bias of the combined estimate is the average of the biases of the individual51

estimates (the combined estimate is unbiased if the individual estimates are unbiased), but52

the assumption of independence is violated and standard errors will be underestimated. More53

recently, Madon et al. (2011) describes a method to estimate abundance from multiple marks54
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by adjusting the sufficient statistics required to compute the Jolly-Seber estimator, but we55

have concerns with this method. Though the observed counts underestimate some of the56

statistics and overestimate others, Madon et al. (2011) uses the same adjustment factor for57

all and constrains its value to be between 0 and 1. Simulations Madon et al. (2011) presents58

indicate a clear problem in that the coverage of confidence intervals is much lower than their59

nominal value, even when the population is large and the capture probability is close to 1.60

These issues are discussed further in Bonner (2013). We are also aware of methods similar61

to ours being developed concurrently by McClintock et al. (2013).62

The primary contribution of our work is to provide a valid method of modeling a popu-63

lation’s dynamics using data from multiple, non-invasive marks. We do so by constructing64

an explicit model of the observation process that allows for multiple marks and applying65

Bayesian methods of inference via Markov chain Monte Carlo (MCMC) sampling. Our model66

is a modification of the latent multinomial model (LMM) presented in Link et al. (2010) for67

modeling mark-recapture data based on genetic marks with non-negligible misidentification68

rates. Further to this, we provide a more efficient simplification of the MCMC algorithm of69

Link et al. (2010).70

2. Data71

Data for our analysis were obtained from the ECOCEAN on-line whale shark library (avail-72

able at www.whaleshark.org). This library contains photographs of whale sharks taken by73

recreational divers and tour operators worldwide and submitted electronically. The library74

has been operational since 2003, and more than 41,000 photographs had been submitted by75

over 3,300 contributors as of January, 2013.76

New photographs submitted to the library are matched against existing photographs using77

two computer algorithms (Arzoumanian et al., 2005; Van Tienhoven et al., 2007). Identities78

are based on the pattern of spots on the flank, believed to be unique, and the algorithms79
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operate independently using significantly different approaches to provide complementary80

coverage in evaluating matches. All matches generated by the computer algorithms are81

confirmed by two or more trained research staff to minimize the probability of false matches.82

Further details on the study site, the observation protocols, and the algorithms for matching83

photographs are provided in Holmberg et al. (2009).84

We model only the data collected from the northern ecotourism zone of NMP during the85

16 week period between April 1 and July 31, 2008. This period was divided into 8 capture86

occasions of 2 weeks each, and sharks may have been encountered multiple times during a87

single capture occasion. Five possible events may occur; on each occasion, a shark may:88

1) not be encountered at all (event 0)89

2) be photographed from the left only (event L),90

3) be photographed from the right only (event R),91

4) be photographed from both sides simultaneously on at least on encounter (event S), or92

5) be photographed from both sides but never simultaneously (event B).93

We will denote a generic encounter history made from these events by ω.94

Problems with identification arise because the pattern of spots on the left and right flanks95

are not the same. It is only possible to match the skin patterns from the two sides of a shark96

if photographs of both sides were taken simultaneously during at least one capture occasion97

– i.e., there is at least one S in its encounter history. Otherwise, an individual photographed98

from both sides will contribute two encounter histories to the data set – one containing the99

observations of its right side and the other containing the observations of its left side.100

Suppose, for example, that an individual’s true encounter history is 00L0B0R0. This history101

is not observable because the two sides of the individual were never photographed simultane-102

ously. Hence, the individual will contribute two observed histories to the data – 00L0L000 and103

0000R0R0. Working backward, the observed histories 00L0L000 and 0000R0R0 may either104
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come from one individual encountered on three occasions or from two separate individuals105

each encountered on two two or more occasions.106

For a study with T capture occasions there are 5T − 1 possible true capture histories (we107

condition on capture and ignore the zero history). Of these, (5T − 1)− (4T − 1) + 2(2T − 1)108

histories can be observed. These include the (5T − 1) − (4T − 1) that contain at least one109

S, which we call simultaneous histories, the 2T − 1 histories that include only 0 and L,110

left-only histories, and the 2T − 1 histories that include only 0 and R, right-only histories.111

The remaining (4T − 1)− 2(2T − 1) contain either L and R together and/or B but no S and112

cannot be observed. Individuals with these true histories contribute two observed histories113

to the data. When a left-only and right-only history, call them ωL and ωR, combine to form114

a third history, ωC , we say that ωL and ωR are the left and right parents of child ωC .115

3. Methods116

3.1 Latent Multinomial Model117

To account for uncertainty in the true encounter histories caused by multiple marks, we118

adapt the LMM model of Link et al. (2010). Suppose that individuals in the population can119

have one of K possible true histories which produce a total of L 6 K possible observable120

histories. The genetic misidentification model of Link et al. (2010), for example, allows for121

three events on each capture occasion: individuals may be captured and identified correctly122

(1), captured and misidentified (2), or not captured (0). This produces K = 3T possible123

true histories but only L = 2T − 1 observable histories. Following Link et al. (2010), we124

define f to be the L-vector of observed counts for the observable histories and x the latent125

K-vector of counts for the possible true histories. The LMM is based on two assumptions126

about these vectors. First, it assumes that each element of f is a known linear combination127

of the elements of x. That is, there is a known K × L matrix A such that f = A′x. This128
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limits the possible values of x given the observed value of f , so we refer to it as the latent129

vector constraint. Second, the LMM assumes that x follows a multinomial distribution130

x ∼ Multinomial(N,π(θ))

with N =
∑K

k=1 xk representing either the population or sample size (depending on whether131

the model conditions on first capture) and π(θ), the cell probabilities dependent on param-132

eter θ.133

The specific model of x we have fit is an extension of the Link-Barker-Jolly-Seber (LBJS)134

model from Link and Barker (2005) modified to allow for multiple marks. We are primarily135

interested in the arrival and departure times of the sharks at NMP and so we condition136

on individuals being captured at least one time and ignore the zero history. In this case,137

N is the total number of individuals captured during the study. Note that unlike standard138

mark-recapture experiments the true value of N cannot be observed.139

The key assumptions of our model are that all emigration from NMP is permanent,140

that the probability of remaining at NMP from one occasion to the next does not depend141

on how long an individual has been present (or any other factors), that encounters are142

independent between individuals and over time, that there are no losses on capture, and143

that the conditional probabilities of the events L, R, S, and B are constant. Under these144

conditions, the cell probability assigned to history ω is:145

πω(θ) =ξ(a|γ,φ,p)

× ρωa

b∏
t=a+1

[
φt−1(ptρωt)

I(ωt 6=0)(1− pt)I(ωt=0)
]

× χ(b|φ,p)

where a = min{t : ωt > 0} and b = max{t : ωt > 0} denote the occasions of the first and146

last captures, and I(·) is the indicator function. The model is parameterized in terms of:147
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1) Recruitment rates: the number of individuals that enter the population between148

occasions t and t+ 1 per individual present on occasion t (γt), t = 1, . . . , T − 1,149

2) Survival probabilities: the probability that an individual present on occasion t is also150

present on occasion t+ 1 (φt), t = 1, . . . , T − 1,151

3) Capture probabilities: the probability that an individual present on occasion t is152

encountered once or more (pt), t = 1, . . . , T , and153

4) Event probabilities: the conditional probability of event E given that an individual154

is encountered (ρE), E ∈ {L,R, S,B}.155

The derived parameter ξ(a|γ,φ,p) models the probability that an individual is first captured156

on occasion a given that it is captured at least one time, and χ(b|φ,p) models the probability157

that an individual released on occasion b is not recaptured. Expressions for these parameters158

are provided in Appendix 6. Prior distributions for the model parameters were chosen to be159

non-informative whenever possible and are described in Appendix 6.160

3.2 Inference161

As Link et al. (2010) explains, maximum likelihood (ML) methods are hard to implement162

for the LMM. Although the likelihood function can be written down easily, it is difficult to163

compute. The distribution of f given N and θ is a mixture of multinomial distributions,164

and its density is easily formulated by summing over all possible values of x that satisfy the165

latent vector constraint. Explicitly:166

L(θ, N |f) =
∑

{x:A′x=f}

f(x|N,θ).

However, there may be many values of x that satisfy these constraints (even for fixed N),167

and there is no simple way to identify them all. This makes it difficult to compute the sum168

directly and to apply ML inference. Instead, Link et al. (2010) applies Bayesian inference169

treating x as missing data and working with the joint posterior distribution of x, N , and θ170
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given f :171

π(x, N,θ|f) ∝ I(f = A′x)f(x|N,θ)π(N,θ). (1)

Inference is then obtained by sampling from this distribution via MCMC.172

The MCMC algorithm that Link et al. (2010) presents is a variant of the Metropolis-173

within-Gibbs algorithm which alternately updates the values of θ and x (note that N is fully174

defined by x and is treated as a derived parameter in the missing data approach). Updating175

the value of θ given x is equivalent to a single MCMC iteration for the parameters of the176

underlying mark-recapture model and can be performed with standard methods. However, it177

is challenging to update x given θ in an efficient way. If proposals are generated by making178

simple changes to x, e.g. adding or subtracting from randomly selected elements, then they179

are unlikely to satisfy the latent vector constraint and will almost always be rejected. To180

avoid this problem, Link et al. (2010) suggests an algorithm that uses vectors from the null181

space of A′ to generate proposals for x that always satisfy the latent vector constraint.182

Suppose that b1, . . . , bR form a basis of null(A′). Given the current values of θ, x, and N ,183

call them θcurr, xcurr and N curr, the algorithm updates x and N by repeating the following184

two substeps for each r = 1, . . . , R:185

1) Generate proposals xprop and Nprop by:186

i) sampling cr from the discrete uniform distribution on −Dr, . . . ,−1, 1, Dr,187

ii) setting xprop = xcurr + crbr, and188

iii) defining Nprop =
∑K

r=1 x
prop
r .189

2) Compute the Metropolis-Hastings ratio:190

α(xcurr, N curr;xprop, Nprop) = min

{
1,
f(xprop|Nprop,θcurr)π(Nprop,θcurr)

f(xcurr|N curr,θcurr))π(N curr,θcurr)

}
and accept the proposals with probability α(xcurr,xprop).191

The key to this algorithm is that A′br = 0 for each r = 1, . . . , R so that A′xprop = A′xcurr +192
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crA
′br = f . This means that xprop always satisfies the latent vector constraint (provided193

that xcurr also satisfies the constraint). The values Dr ∈ Z are tuning parameters that need194

to be chosen interactively or before starting the chain.195

Although this algorithm solves the problem of generating valid proposals for x and N , the196

computational cost grows exponentially with T . The dimension of null(A′) in the genetic197

misidentification problem considered by Link et al. (2010) is R = 3T − (2T −1). Each update198

of x requires 212 substeps if T = 5, 58,026 substeps if T = 10, and 3.5 × 109 substeps if199

T = 20.200

The amount of computation grows even faster for the problem of multiple marks. Our201

model allows for K = 5T − 1 possible true histories and L = (5T − 1)− (4T − 1) + 2(2T − 1)202

observable histories; the dimension of null(A′) is r = (4T −1)−2(2T −1). When T = 8, there203

are 390,624 possible true histories of which 325,599 are observable. The MCMC algorithm204

of Link et al. (2010) would require 65,025 substeps for each update of x.205

To show how the algorithm can be simplified we consider a toy example. Suppose that206

T = 8 and that only the six histories shown in the top of Table 1 are observed. These include207

two left-only, two right-only, and two simultaneous histories. Although there are 390,624208

possible true histories with T = 8 entries, the vast majority of these are not compatible209

with the observed histories. In this example, only ten true histories are compatible with the210

observed data. These include the six observed histories plus the four extra histories formed211

by combining each left-only and each right-only history, shown in the bottom of Table 1.212

Any other true history would have produced an observed history not seen in the data.213

[Table 1 about here.]214

Modeling can now be conducted using only the six histories observed and the ten compat-215

ible true histories. Redefine f to be the vector of length 6 containing counts for the observed216

histories and x the vector of length 10 containing counts for the compatible true histories.217
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The latent vector constraints between f and x are determined by pairing each parent in the218

observed histories with its children in the compatible true histories. Specifically, the number219

of times a parent is observed must equal the sum of the counts from all of its children in the220

compatible true histories. In the toy example, the first observed history is a parent of the221

1st, 7th, and 9th compatible true histories. The corresponding constraint is f1 = x1 +x7 +x9.222

The remaining constraints are: f2 = x2 + x8 + x10, f3 = x3 + x7 + x8, f4 = x4 + x9 + x10,223

f5 = x5, and f6 = x6. One consequence is that x has only four free elements. New values224

of x can be sampled by updating only x7, . . . , x10 in turn and adjusting the remaining225

counts accordingly. Further, the values of x7, . . . , x10 are bounded by the observed counts.226

In the example, 0 6 x7 6 min(f1, f3), 0 6 x8 6 min(f2, f3), 0 6 x9 6 min(f1, f4) and227

0 6 x10 6 min(f2, f4). These bounds can be used to define proposal distributions that are228

free of tuning parameters.229

Generally, let L
′

denote the number of unique histories observed and K
′

the number of230

compatible true histories. Explicitly, L
′

= L
′
L + L

′
R + L

′
S and K

′
= L

′
+ L

′
LL

′
R where L

′
L,231

L
′
R, and L

′
S denote the numbers of left-only, right-only, and simultaneous histories observed.232

To describe the algorithm we need to know the order of the counts in f and x. We order f233

so that the L
′
L counts of the left-only histories come first, followed by the L

′
R counts for the234

right-only histories, and finally by the L
′
S counts for the simultaneous histories. We order235

x in the same way with the counts for the L
′
LL

′
R extra, compatible true histories added at236

the end. For each of the extra histories let l(k) and r(k) be the indices of its left and right237

parents. In the toy example, l(7) = 1 and r(7) = 3. The latent vector constraints are then238

given by the constraints on the left-only histories:239

fj = xj +
∑

{k:l(k)=j}

xk, j = 1, . . . , L
′

L,
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the constraints on the right-only histories:240

fj = xj +
∑

{k:r(k)=j}

xk, j = L
′

L + 1, . . . , L
′

L + L
′

R,

and the constraints on the simultaneous histories:241

fj = xj, j = L
′

L + L
′

R + 1, . . . , L
′
.

These equations show that x is completely defined by the L
′
LL

′
R elements xL′+1, . . . , xK′ and242

that xk 6 min(fl(k), fr(k)) for each k = L
′
+ 1, . . . , K

′
.243

Updates to xcurr given θcurr can then be performed with the following algorithm. For each244

k = L
′
+ 1, . . . , K

′
:245

1) Generate proposals xprop and Nprop by:246

i) setting xprop = xcurr,247

ii) sampling xpropk from {0, . . . ,min(fl(k), fr(k))},248

iii) setting xpropl(k) = xcurrl(k) − (xpropk − xcurrk ) and xpropr(k) = xcurrr(k) − (xpropk − xcurrk ),249

iv) and defining Nprop =
∑K

′

k=1 x
prop
k .250

2) Reject the proposals immediately if xpropl(k) < 0 or xpropr(k) < 0.251

3) Otherwise, compute the Metropolis-Hastings ratio:252

α(xcurr,xprop) = min

{
1,
f(xprop|Nprop,θcurr)π(Nprop,θcurr)

f(xcurr|N curr,θcurr))π(N curr,θcurr)

}
and accept xprop and Nprop with probability α(xcurr,xprop)253

The advantage of this algorithm is that it uses only L
′
LL

′
R steps to update x. For the toy254

example with 6 observed histories, x can be updated in 4 steps. For the 2008 ECOCEAN255

whale shark data, L
′
L = 27 and L

′
R = 24 so the new algorithm requires only 648 substeps to256

update x. This is much smaller than the 65,025 substeps required by the algorithm of Link257

et al. (2010).258

We have implemented the MCMC sampling algorithm for fitting the multiple MARK model259

directly in R and using the JAGS interpreter for the BUGS language (Plummer, 2003, 2011;260
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Team, 2012). An R package providing functions to format the data and to fit these models261

is available from the website of the first author at www.simon.bonners.ca/MultiMark. In262

application to the 2008 ECOCEAN whale shark data, we ran three parallel chains with 10,000263

burn-in iterations and 50,000 sampling iterations each. Convergence was monitored with the264

Gelman-Rubin-Brooks (GRB) diagnostic (Brooks and Gelman, 1998) as implemented in the265

R package CODA (Plummer et al., 2006).266

4. Simulation Study267

To assess the performance of the model presented in the previous section we conducted sim-268

ulation studies under a variety of scenarios. Here we present the results from two simulation269

scenarios which illustrate our main results.270

In our simulations, we compared the performance of the new model (the two-sided model)271

with two alternatives. First, we fit models using considering only the data from the left-272

side photographs (the one-sided model). Capture histories were constructed by combining273

all events that include a left-side photograph, namely L, S, and B, ignoring all right-side274

photographs. The models we fit to this data were equivalent to the LBJS model with275

prior distributions as given in Appendix 6. Second, we fit a Bayesian method of combining276

inferences from the two sides under the assumption of independence as in (Wilson et al.,277

1999) (combined inference). To do this, we fit separate models to the data from the left-278

and right-side photographs and averaged the values drawn on each iteration of the separate279

MCMC samplers prior to computing summary statistics. For example, let φ
(k,L)
t and φ

(k,R)
t280

represent the values of φt drawn on the kth iterations of the MCMC samplers run separately281

for models of the the left- and right-side data. Let V̂ar(L)(φt) and V̂ar(R)(φt) be the posterior282

variances estimated from all iterations. Combined inference for φt was obtained by computing283
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the inverse variance weighted average of φ
(k,L)
t and φ

(k,R)
t284

φ
(k)
t =

(V̂ar(R)(φt)φ
(k,L)
t + V̂ar(L)(φt)φ

(k,R)
t )

V̂ar(L)(φt) + V̂ar(R)(φt)

and then computing summary statistics from the new chain φ
(1)
t , φ

(2)
t , . . .. Credible intervals285

can then be computed directly from the new chain without relying on normal approximations.286

The mean of the values in the new chain is exactly equal to the inverse-variance weighted287

average of means from the separate chains.288

We expected that the new model would provide better inference than the two alternatives.289

In particular, we expected that credible intervals from the one-sided models would be wider290

than the corresponding intervals from the two-sided model. We also expected that credible291

intervals produced by combined inference would be narrower than the intervals from the292

two-sided model but would not achieve the nominal coverage probability.293

In the first scenario, we generated data under the assumption that all events were equally294

likely given capture (ρL = ρR = ρB = ρS = .25). We set T = 10 and generated data295

by simulating true capture histories sequentially until 200 observed capture histories were296

produced (each true history contributing either 0, 1, or 2 histories to the observed data).297

Demographic parameters were simulated from the distributions:298

logit(φt) ∼ N(logit(.80), .30), logit(pt) ∼ N(logit(.80), .30), log(γt) ∼ N(log(.25), .30).

A total of 100 data sets were simulated and analyzed. The median number of true histories299

simulated before 200 observed histories were obtained was 164 (min=150,max=180), the300

median number of unique individuals observed was 138 (min=127,max=148), and the median301

number of captures per individual was 2 (min=1,max=10).302

Table 2 presents statistics comparing the mean-squared error (MSE) of the posterior means303

and the mean width and estimated coverage probability of the 95% credible intervals obtained304

from the alternative models. The MSE of the two-sided model and the combined-inference305

were similar for all parameters and smaller than those of the one-sided model by between306
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10% and 25%. Credible intervals for both the one-sided and two-sided models achieved the307

nominal coverage rate for all parameters, but the credible intervals for the one-sided model308

were wider by approximately 10%. In comparison, the credible intervals from the combined309

inference were narrower than those of the two-sided model by 20% or more but failed to310

achieve the nominal coverage rate.311

In the second scenario, we simulated data from the same model except that both marks312

were seen with probability one each time an individual was captured (ρS = 1). This represents313

the extreme situation in which there is complete dependence between the two marks and no314

uncertainty in the true capture histories. In this case, the one-sided and two-sided models315

produce identical results. The median number of histories simulated in the 100 data sets316

before 200 observed histories were obtained was 215 (min=204,max=227) and the median317

number of captures per observed individual was 2 (min=1,max=10).318

Point estimates produced by the two models in this scenario were almost exactly equal and319

the MSE of the two models was indistinguishable (see Table 2). However, there were clear320

differences in the interval estimates. While the intervals produced by combined-inference321

were, on average, 30% narrower, the coverage of these intervals was well below the nominal322

value.323

[Table 2 about here.]324

5. Results325

The data provided in the ECOCEAN whale shark library contained a total of 96 observed326

encounter histories for the 2008 study period. Of these, 27 histories (28%) were constructed327

from left-side photographs alone, 24 (25%) were constructed from right-side photographs328

alone, and 45 (47%) contained at least one encounter with photographs taken from both329
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sides simultaneously. Along with the model presented in Section 3, we computed inferences330

for p, f , and φ from the alternative models described in Section 4.331

Table 3 provides posterior summary statistics for the LBJS parameters model obtained332

from the two-sided model. Inferences about all parameters are relatively imprecise because333

of the relatively small number of individuals captured and the low capture probabilities, but334

the posterior means follow the expected patterns. Point estimates for the survival probability335

(the probability that a whale shark remains at NMP between occasions) are at or above .90336

in the first two periods, below .70 in the last two periods, and about .80 in between. The337

posterior mean recruitment rate is very high in week two, suggesting that most of the sharks338

entered during this period, and lower thereafter. This table also provides summary statistics339

for the population growth rate, λk = φk + fk, k = 1, . . . , K − 1, computed as a derived340

parameter. Although the 95% credible intervals for λk cover 1.00 for all k, the point estimates341

are greater than 1.00 for the first two periods, close to 1.00 in the next three periods, and342

less than .75 in the last two periods. This suggests that the aggregation of whale sharks343

grew during the first two periods, remained almost steady during the next three periods,344

and declined during the last two periods. This supports the hypothesis that whale sharks345

aggregate at NMP to feed after the major coral spawn which occurred between April 9 and346

12 in 2008 (Chalmers, 2008, pg. 33).347

[Table 3 about here.]348

Table 4 provides posterior summary statistics for the conditional event probabilities. These349

results show that sharks were photographed from both sides simultaneously most often (ρ̂S =350

.45(.36, .54)) and that the probabilities that an individual was photographed from either the351

left or right side only were similar (ρ̂L = .29(.20, .38) versus ρ̂R = .21(.13, .29)).352

The posterior mean of N , the number of unique sharks encountered during the 2008 season,353

was 88 with 95% credible interval (82,93). The full posterior distribution of N is shown354
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in Figure 1 and compared with the prior distribution of N generated by simulating data355

sets from the prior predictive distribution conditional on there being 96 observed capture356

histories and at least 72 true histories (the minimum number given that 24 of 96 observed357

histories included right-side photographs alone). Whereas the prior distribution of N is358

close to uniform, the posterior distribution is strongly peaked and concentrates 95% of its359

mass between 82 and 93. We conclude that between 3 (3.1%) and 14 (14.6%) of the sharks360

encountered during the 2008 season were photographed from both the left and right sides361

on separate occasions without ever being matched.362

[Table 4 about here.]363

[Figure 1 about here.]364

Comparisons of the three chains starting from different initial values provided no evidence365

of convergence problems. Traceplots all indicated that the three chains converged within the366

burn-in period, GRB diagnostic values were all less than 1.02, and the estimated MCMC367

error was less than 2.6% of the posterior standard deviation for each parameter. Based on368

these results, we are confident that the chains were long enough to produce reliable summary369

statistics.370

The plots in Figure 2 compare inferences for the survival, recruitment, and growth rates371

from the four alternative models. Posterior means from the four models are all very similar372

and the 95% credible intervals for all parameters overlap considerably. Comparison of the373

widths of the 95% credible intervals from the left- and right-side data alone showed that the374

two-sided model provided improved inference for most, but not all, parameters. On average,375

the 95% credible intervals for the recruitment rates produced by the two-sided model were376

93% and 69% as wide as those produced from the left- and right-side data alone. The 95%377

credible intervals for the survival probabilities produced by the two-sided model were 78% as378

wide as those from the right-side data, on average, but 103% as wide as those from the left-379
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side data. This last result seems to be caused by issues with the upper bound on the survival380

probabilities as the 95% credible intervals for the logit transformed survival probabilities381

produced from the two-sided model were, on average, 90% and 89% as wide as those obtained382

from the left- and right-side data alone. Credible intervals produced via combined inference383

were on average 12% smaller than those obtained from the two-sided model; however, based384

on the results in the previous section, we believe that these intervals would not achieve the385

nominal coverage rate and do not reflect the variability of the parameters correctly.386

[Figure 2 about here.]387

6. Conclusion388

The simulation results presented in Section 4 illustrate the main advantages of our model389

over the previous approaches to analyzing mark-recapture data with multiple, non-invasive390

marks. In general, estimates from our model will be more precise than estimates based391

on only one mark. In contrast, the apparent gain in precision from combining estimators392

computed separately for each mark under the assumption of independence is artificial and393

credible/confidence intervals computed by these methods will not achieve the nominal cover-394

age rate. The effect is strongest when the probability that both marks are seen simultaneously395

is high and the separate estimators are highly dependent.396

The disadvantage of combining data from multiple marks is that the model is more complex397

and computations take longer. A single chain of 60,000 iterations for the 2008 whale shark398

data implemented in native R code ran in 28.6 minutes on a Linux machine with a clock399

speed of 2.8 GHz. In comparison, a chain of the same length for the one-sided data finished400

in 6.2 minutes. Our algorithm is less complex than that of Link et al. (2010), but the amount401

of computation is still proportional to the square of the number of observed histories and the402

chains may take too long to run for some large data sets. We are exploring possible solutions403
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including developing more efficient methods of computation and approximating the posterior404

distribution.405

Although we have described our model for two marks, it can easily be extended for data406

with any number of marks. We expect that including more marks will strengthen differences407

between our model, the one-sided model, and combined inference seen in the simulation408

study. The model can also be adapted easily to estimate the size of an open population.409

Following Link et al. (2010), one can include the null encounter history (vector of 0s) in the410

set of possible true histories. Then x would have length K
′
= L

′
+L

′
LL

′
R+1 and N =

∑K
′

k=1 xk411

would denote the total population size. Because the observed histories do not restrict the412

number of individuals never encountered the constraints on x would not change. The only413

differences are that the MCMC algorithm presented in Section 3.2 would require one more414

substep to update the number of individuals never encountered and that the prior bound on415

N must be increased to allow for the unobserved individuals.416

Non-invasive marks are especially useful for mark-recapture studies that rely on public417

data collection because they can often be observed without special equipment or physical418

interaction. So called citizen science projects involving “public participation in organized419

research efforts” (Dickinson and Bonney, 2012, pg. 1) play an important role in ecological420

monitoring. Large teams of volunteer researchers can cover large geographical areas and421

quickly collect large data sets. As examples of successful, large scale, citizen science projects422

in the United States, Dickinson and Bonney (2012) highlights the US Geological Survey’s423

North American Breeding Bird Survey (BBS), the National Audubon Society’s Christmas424

Bird Count, and projects of The Cornell Lab of Ornithology at Cornell University. The425

authors estimate that “200,000 people participate in [their] suite of bird monitoring projects426

each year” (Dickinson and Bonney, 2012, pg. 10).427

One concern with many citizen science projects is the reliability of the data. Some general428
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issues concerning the accuracy and analysis of data from citizen science projects are discussed429

by Cooper et al. (2012). Though the ECOCEAN library does rely on reports from untrained430

observers, it differs from similar projects in that citizens provide no more than the raw data.431

Most importantly, the contributors do not identify the sharks they photograph. Instead,432

the submit their photographs to the library and matches suggested by the paired computer433

algorithms are all confirmed by trained researchers (see Section 2). Hence, the data does not434

depend on the ability of tourists or tour operators to identify spot patterns and matches435

can be reconfirmed at any time. Even the reported times that a photograph was taken can436

be confirmed from the digital timestamp. For these reasons, we are confident that errors in437

the data set are minimized and that the results provided in Section 5 accurately reflect the438

arrival and departure of sharks from NMP in 2008.439

Although we are confident in our results, some of the assumptions of our model given440

in Section 3 may oversimplify the population’s dynamics. Sharks may move temporarily to441

other areas of the reef and factors like age, sex, or fitness might affect the length of time that a442

shark remains at NMP. The objective of this research was to develop and illustrate a general443

method for modeling data with multiple marks, and we intend to explore more complicated444

models of the ECOCEAN data in further work. Changes in survival, fecundity, and capture445

over time or among individuals might be accounted for with covariates or random effects, and446

temporary emigration might be modeled with Pollock’s robust design (Pollock, 1982). We447

also intend to model data from multiple years in order to assess changes in the population448

over time.449
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Appendix520

Derived Parameters521

As in Link and Barker (2005):522

ξ(a|γ,φ,p) =
κa∑T
t=1 κt
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where:523

κ1 = p1

κ2 = (φ1(1− p1) + γ1)p2

κt+1 = pt+1

(
κt(1− pt)φt

pt
+ γt

t−1∏
k=1

(φk + γk)

)
, t = 2, . . . , T − 1.

Similarly:524

χ(t|φ,p) = (1− φt) + φt(1− pt+1)χ(t+ 1|φ,p), t = 1, . . . , T − 1

with χ(T |φ,p) = 1.525

Prior Distributions526

Parameters in the model of the true histories were assigned the following prior distributions:527

logit(φt) ∼ N(µφ, σ
2
φ), t = 1, . . . , T − 1

logit(pt) ∼ N(µp, σ
2
p), t = 1, . . . , T

log(γt) ∼ N(µγ, σ
2
γ), t = 1, . . . , T − 1

(ρL, ρR, ρS, ρB) ∼ Dirichlet((1, 1, 1, 1)T )

N ∼ U{0, . . . , Umax}

The value Umax must be bigger than the true value of N . This can be achieved by setting528

Umax =
∑L

l=1 fl when the model conditions on first capture.529

Hyperparameters were assigned the prior distributions:530

µφ, µp ∼ N(0, 2)

µγ ∼ N(0, .25)

σφ, σp, σγ ∼ HT (3, .9)

Here HT (ν, σ) represents the half t-distribution with ν degrees of freedom and scale param-531

eter σ. All prior distributions were assumed independent.532
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Number of Whale Sharks Encountered
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Figure 1. Comparison of the prior and posterior distribution ofN . The prior distribution of
N , conditional on there being 96 observed capture histories and at least 72 unique individuals,
is shown by the histogram with white bars. The posterior distribution of N is shown by the
histogram with grey bars.
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Figure 2. Comparison between the two-sided model and the three alternative models. The
plots on the left-side of the figure compare the posterior means (points) and 95% credible
intervals (vertical lines) of the survival probability (top), recruitment rate (middle), and
population growth rate (bottom) obtained from the four models. The plots on the right side
of the figure display the posterior standard deviations from the three alternative models
relative to the posterior standard deviation from the two-sided model. Results from the two-
sided model are represented by the circles, from the left-side photographs only by the upward
pointing triangles, from the right-side photographs only by the downward pointing triangles,
and from combined inference by the diamonds.
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Table 1
Example of possible observed and true capture histories. Suppose that the data comprises the six observed histories
given in the top of the table. The possible true histories that may have generated this data include these six plus the

four additional histories in the bottom of the table.

k History

Observed 1 00L0L000
2 0000L000
3 00R00000
4 000RR000
5 00SBR000
6 S0S00000

Unobserved 7 00B0L000
8 00R0L000
9 00LRB000
10 000RB000
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Table 2
Performance of the estimates from the two simulation scenarios. Each column of the table presents the MSE of the

posterior mean relative to the MSE of the posterior mean of the one-sided model, and the median width and
estimated coverage probability of the 95% credible intervals for the survival probability (φ), recruitment rate (f), and

growth rate (λ) for one of the three models – one-sided (OS), two-sided (TS), or combined-inference (CI). The
models are described in Section 4.

Simulation 1 Simulation 2
OS TS CI TS CI

φ MSE 1.00 .89 .87 1.00 1.00
Width .23 .20 .16 .17 .12
Cover .97 .96 .90 .95 .84

f MSE 1.00 .88 .81 1.00 1.00
Width .35 .31 .24 .26 .18
Cover .97 .95 .90 .95 .84

λ MSE 1.00 .88 .82 1.00 1.00
Width .41 .36 .29 .31 .22
Cover .98 .97 .95 .97 .87
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Table 3
Posterior summary statistics for the demographic parameters φk, fk, λk, and pk obtained from the two-sided model.

The columns of the table provide posterior means followed with equal-tailed 95% credible intervals.

Occ (k) Survival (φk) Recruitment (fk) Growth (λk) Capture (pk)

1 0.90(0.67,1.00) 0.36(0.00,1.93) 1.26(0.76,2.83) 0.23(0.08,0.43)
2 0.92(0.73,1.00) 2.40(0.08,6.41) 3.31(1.00,7.33) 0.19(0.05,0.33)
3 0.82(0.54,1.00) 0.17(0.00,0.72) 0.99(0.64,1.56) 0.26(0.15,0.43)
4 0.77(0.45,0.99) 0.09(0.00,0.36) 0.85(0.51,1.20) 0.22(0.13,0.34)
5 0.82(0.49,1.00) 0.23(0.00,0.79) 1.05(0.63,1.65) 0.22(0.12,0.36)
6 0.48(0.14,0.96) 0.06(0.00,0.29) 0.54(0.17,1.12) 0.25(0.14,0.42)
7 0.66(0.16,0.99) 0.09(0.00,0.42) 0.75(0.20,1.28) 0.20(0.06,0.37)
8 – – – 0.18(0.03,0.34)
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Table 4
Posterior summary statistics for the conditional event probabilities.

Event (j) Cond. Prob. (ρj)

1 0.29(0.20,0.38)
2 0.21(0.13,0.29)
3 0.45(0.36,0.54)
4 0.06(0.01,0.13)


