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Summary16

1. Estimating abundance from mark-recapture data is challenging when capture17

probabilities vary among individuals.18

2. Initial solutions to this problem were based on fitting conditional likelihoods and19

estimating abundance as a derived parameter. More recently, Bayesian methods20

using full likelihoods have been implemented via reversible jump Markov chain Monte21

Carlo sampling (RJMCMC) or data augmentation (DA). The latter approach is22

easily implemented in available software and has been applied to fit models that23

allow for heterogeneity in both open and closed populations. However, both24

RJMCMC and DA may be inefficient when modeling large populations.25

3. We describe an alternative approach using Monte Carlo (MC) integration to26

approximate the posterior density within a Markov chain Monte Carlo sampling27

scheme. We show how this Monte Carlo within MCMC (MCWM) approach may be28

used to fit a simple, closed population model including a single individual covariate,29

and present results from a simulation study comparing RJMCMC, DA, and MCWM.30

We found that MCWM can provide accurate inference about population size and can31

be more efficient than both RJMCMC and DA. The efficiency of MCWM can also be32

improved by using advanced MC methods like antithetic sampling.33

4. Finally, we apply MCWM to estimate the abundance of meadow voles (Microtus34

pennsylvanicus) at the Patuxent Wildlife Research Center in 1982 allowing for35

capture probabilities to vary as a function body mass.36

2



1 Introduction37

Individual variation is a key driver of evolution and an important consideration in modeling38

the demographics of many populations. However, individual heterogeneity presents a39

challenge in the analysis of mark-recapture data – particularly when the goal is to estimate40

abundance. In practice, differences in the behavior of individuals in a population may be41

modeled as functions of individual covariates or random effects. In either case, the42

likelihood function will include integrals to account for all possible values of the unobserved43

effects. These integrals may be difficult to compute if multiple covariates/random effects44

are included or if a single individual covariate/random effect changes over time, which45

makes evaluating the true likelihood for the entire population problematic.46

Intractable likelihoods pose a general problem in statistics, and several solutions have47

been proposed within the Bayesian framework. We explore Monte Carlo integration within48

Markov chain Monte Carlo sampling (MCWM) to obtain inference from mark-recapture49

models with individual heterogeneity. While we focus on modeling the effects of individual50

covariates, the same methods can be applied to models including random effects or a51

combination of the two.52

One way to avoid the problem with intractable likelihoods is to estimate abundance53

with a conditional likelihood approach. Huggins (1989) and Alho (1990) presented methods54

for estimating the size of a closed population when the capture probability depends on an55

individual covariate. Likelihoods which condition on at least one capture are fit to the data56

from the marked individuals and used to estimate capture probability as a function of the57

covariate. Abundance is then estimated using a Horvitz-Thompson estimator. These58
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methods were later extended to open population models by McDonald and Amstrup59

(2001). However, these models are restrictive and can only be used if the covariate is60

completely observed for the marked individuals (i.e., the covariate is constant or changes61

deterministically like age).62

Alternatively, Bayesian inference via Markov chain Monte Carlo (MCMC) has been63

applied to fit models allowing for the effects of time-varying, individual covariates or other64

covariates that are only partially observed for the marked individuals. Dupuis (1995)65

applied Bayesian methods to model the effects of discrete covariates on survival of66

individuals in an open population (i.e., the multi-state model). Following this, Pollock67

(2002) suggested that a Bayesian approach could be applied for the particular case of68

continuous, time-varying, individual covariates and noted that: “Bayesian methods69

automatically integrate out unobserved random variables using numerical integration or70

Markov Chain Monte-Carlo sampling methods” (Pollock, 2002, pg. 97). Bonner and71

Schwarz (2006) applied Bayesian inference via MCMC to model the effects of time72

dependent covariates on individual capture and survival probabilities in the73

Cormack-Jolly-Seber (CJS) model. King et al. (2006) described a similar approach and74

provided methods of variable selection while Gimenez et al. (2006) incorporated75

semi-parametric regression to allow for non-linear effects of the covariate. Royle et al.76

(2007) and Royle (2009) later developed MCMC based methods to make inference about77

the size of a closed population when capture probabilities vary among individuals. Their78

method is based on augmenting the observed data with a large number of zero capture79

histories representing a pool of individuals that may have been alive but never captured80

and has become known as the data augmentation (DA) approach. This method is81
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appealing because it provides a conceptually simple framework that can be applied to82

many models and is easily implemented in the BUGS language. More recently, Schofield83

and Barker (2011) and Royle and Dorazio (2012) have shown how the same methods may84

be applied to model open populations with individual heterogeneity. Alternatively,85

Bayesian inference regarding the size of an open or closed population with individual86

heterogeneity may implemented with the reversible jump MCMC (RJMCMC) algorithm as87

described by King and Brooks (2008).88

Our current work is motivated by our experiences applying DA and RJMCMC to a89

variety of mark-recapture data sets. Both DA and RJMCMC avoid the need for explicit90

integration by working with complete data likelihoods (CDL) in place of the observed data91

likelihood. These CDL are constructed by adding extra, unobserved random variables to92

the data which would simplify computation of the likelihood, if observed (see e.g.93

Dempster et al. 1977 and Gelman et al. 2003, Section7.2).94

We have found that the chains constructed by these algorithms may be computationally95

inefficient1 in that they mix poorly and take a long time to generate a representative96

sample from the posterior distribution. This seems especially true when the models include97

time-dependent, individual covariates or other multidimensional covariates which make the98

likelihood difficult to evaluate numerically. All MCMC methods work by constructing a99

Markov chain which has the posterior distribution as its unique stationary distribution.100

Samples from the posterior distribution are generated by simulating sufficiently long101

realizations of the Markov chain, and these samples are used to estimate posterior102

1We use efficiency to refer to computational efficiency of the different sampling algorithms not statistical
efficiency. One algorithm is more efficient than another if it requires less time to provide the same amount
of information about the posterior distribution.
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summary statistics. The challenge with DA and RJMCMC is that a lot of time may be103

spent updating the extra variables added to the CDL when a small fraction of the104

population is captured and marked. Moreover, we have found that the chains can have105

high autocorrelation meaning that large samples are needed to estimate posterior summary106

statistics accurately.107

We explore the use of MCWM as an alternative to these algorithms for fitting108

mark-recapture models with individual covariates. We focus on a simple, closed population109

model with one individual covariate as an example of the method and provide results of a110

simulation study comparing MCWM, DA, and RJMCMC. We also apply our method to111

data on meadow voles (Microtus pennsylvanicus) collected at the Patuxent Wildlife112

Research Center in 1981 and 1982 (Nichols et al., 1992) and compare the results with DA113

and RJMCMC. Although this data was collected using a robust design, we only consider114

the information from the final primary period and model capture probability as a function115

of a vole’s average observed body mass. Previous analysis of this data has shown a116

significant, positive relationship between capture probability and body mass (Schofield and117

Barker, 2011), and abundance estimates which ignore this heterogeneity would be biased.118

2 Methods119

We describe MCWM and compare it with the alternative RJMCMC and DA algorithms for120

the following simple model. Suppose that the population of interest is closed and that the121

capture probability for each individual is a linear function of a normally distributed122

covariate on the logit scale. Assuming no behavioral effects, time effects, or losses on123
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capture, the number of times the ith individual is captured on T occasions, Yi, can be124

modeled as:125

Yi|pi
ind∼ Binomial(T, pi), i = 1, . . . , N

where N is abundance and126

logit(pi) = β0 + β1xi and xi
iid∼ N(µ, σ2).

Further, suppose that β0 = 0, β1 = 1, and σ2 = 1 so that the only unknown parameters are127

µ and N . Let n denote the number of individuals captured at least one time and let128

Y obs = (y1, . . . , yn)′ and Xobs = (x1, . . . , xn)′ represent the observed data. The observed129

data likelihood is:130

L(µ,N |Y obs,Xobs) =

(
N

n

)
P0(µ)N−n

n∏
i=1

pyii (1− pi)T−yiφ(xi − µ)

where φ(z) represents the standard normal density function and P0(µ) is the probability131

that a randomly selected individual is never captured. That is:132

P0(µ) =

∫ ∞
−∞

(
1

1 + exp(x)

)T
φ(x− µ) dx. (1)

To complete the Bayesian specification we define prior distributions for the two unknown133

parameters. We assume independent priors for µ and N such that the posterior density134

satisfies:135

π(µ,N |Y obs,Xobs) ∝ L(µ,N |Y obs,Xobs)π(µ)π(N).
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Specifically, we have selected a conjugate normal prior for µ, µ ∼ N(0, τ 2) with τ 2 fixed,136

and the Jeffrey’s prior for N , π(N) ∝ N−1, as recommended by Link (2013).137

The posterior density is not tractable even for this simple model and so it is necessary138

to sample from the posterior distribution to make inference about µ and N . Supposing139

that it was in fact possible to evaluate P0(µ) directly, the likelihood in eqn. (1) could be140

computed explicitly and values from the posterior distribution could be generated by a141

standard MCMC implementation. The full conditional distribution of N would follow a142

negative binomial distribution so that values of N could be generated directly (a so-called143

Gibbs sampling step)2. The full conditional distribution of µ would not be tractable, but144

values of µ could be generated from a slightly more complicated Metropolis-Hastings step.145

This involves proposing a new value for µ from some distribution conditional on the146

current value, denoted by q(·|µ), and accepting or rejecting this proposal according to the147

Hastings ratio (see for example Gilks et al. (1996, pg. 5–8)). Explicitly, let µ(t) and N (t)
148

represent the values of µ and N generated on the tth iteration. The next values would be149

generated in two steps by:150

A) Updating µ(t) given N (t), Xobs, and Y obs via a MH step:151

1) Propose µ′ ∼ q(µ|µ(t))152

2) Accept µ′ and set µ(t+1) = µ′ with probability α = min(1, r(µ(t), µ′)) where:153

r(µ(t), µ′) =
π(µ′|N (t),Xobs,Y obs)

π(µ(t)|N (t),Xobs,Y obs)
· q(µ

(t)|µ′)
q(µ′|µ(t))

.

2The negative binomial may be considered as a distribution on either the number of trials or number of
failures until a specified number of successes occurs. We consider the distribution of the number of trials
until n successes are reached so that N ≥ n.
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Otherwise, set µ(t+1) = µ(t).154

B) Updating N (t) given µ(t+1), Xobs, and Y obs via a Gibb’s sampling step:155

N (t+1) ∼ Neg. Bin.(n, 1− P0(µ
(t+1))).

Under general conditions on q(·|µ), the distribution of (µ(t), N (t)) would converge to the156

posterior distribution as t→∞. If t were big enough then (µ(t), N (t)), . . . , (µ(t+s), N (t+s))157

could be considered as approximate (in some cases, exact) draws from the posterior158

distribution and used to estimate posterior summary statistics (see Gilks et al. (1996) for159

further details). Of course, this algorithm cannot be implemented because P0(µ) cannot be160

computed.161

2.1 Complete Data Likelihoods162

Both RJMCMC and DA avoid the need to compute P0(µ) directly by constructing163

posterior distributions from CDLs that do not include the integral in eqn. (1). As164

mentioned above, these CDLs are formed by expanding the model to include additional,165

unobserved data that simplify the likelihood.166

The CDL for RJMCMC is constructed by modeling the hypothetical data for all N167

individuals in the population. For the simple model, the additional random variables168

comprise the covariates for the N − n unobserved individuals denoted by169
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Xmiss
N = (xn+1, . . . , xN)′. The CDL for RJMCMC is:170

LRJ(µ,N,Xmiss
N |Y obs,Xobs) =

(
N

n

) n∏
i=1

pyii (1− pi)T−yiφ(xi − µ)

N∏
i=n+1

(
1

1 + exp(xi)

)T
φ(xi − µ).

The posterior distribution is constructed by assigning priors to the parameters µ and N ,171

exactly as above. Summary statistics including posterior means, standard deviations, and172

credible intervals are then approximated by sampling values from the joint posterior173

distribution of µ, N and Xmiss
N .174

The full conditional distribution of N for RJMCMC does not have a simple form and175

cannot be updated by Gibbs sampling. In fact, the update of N requires a reversible jump176

(RJ) step that is more complicated than the standard MH update because the dimension177

of Xmiss
N depends on N . In the RJ step, a new value for N is proposed as in an MH step178

but a corresponding proposal for Xmiss
N must also be constructed by adding or deleting179

elements to obtain the correct number of covariates. The proposals for N and Xmiss
N are180

then accepted or rejected as a single unit. Further to this, the elements of Xmiss
N must be181

updated separately outside of the reversible jump step. The full conditionals for these182

values are not tractable, and these values must be updated through N − n separate MH183

steps (see Schofield and Barker, 2011, for details).184

As an alternative, the DA algorithm of Royle et al. (2007) constructs a CDL by185

modeling the hypothetical data for a fixed super-population of size M >> N . The186

additional data for our simple model comprises the covariates for the M − n unobserved187
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individuals in the super-population, Xmiss
M = (xn+1, . . . , xM)′, along with M − n binary188

variables indicating which unobserved individuals are part of the realized population,189

denoted by z = (zn+1, . . . , zM)′. The CDL for DA is:190

LDA(µ, ψ,z,Xmiss
M |Y obs,Xobs) =

n∏
i=1

ψpyii (1− pi)T−yiφ(xi − µ)

M∏
i=n+1

[
ψ

(
1

1 + exp(xi)

)T]zi
(1− ψ)1−ziφ(xi − µ).

Here ψ = P (zi = 1) is the probability that an individual in the super-population is part of191

the realized population. The posterior distribution is constructed by assigning prior192

distributions to µ and ψ. We assign µ a conjugate normal prior, as above, and approximate193

the Jeffrey’s prior for N by setting ψ ∼ Beta(.0001, 1), as described by Link (2013).194

Samples are then drawn from the posterior distribution of µ, ψ, and z with N treated as a195

derived quantity (N = n+
∑M

i=n+1 zi).196

In comparison with the RJMCMC algorithm, all of the updates in the DA algorithm197

may implemented with Gibbs or MH steps. However, the variables zi and xi must be198

updated for each unobserved individual on each iteration. These two values may be199

updated separately or together in a block MH step, but in either case the complexity of DA200

depends on M . We have found that RJMCMC and DA may both take a long time to run201

and the resulting chains may have high autocorrelation when N is large and the202

distribution of the covariate is complex.203
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2.2 Monte Carlo within MCMC204

In short, MCWM is a generalization of the MH updater which uses Monte Carlo (MC)205

integration to approximate both the numerator and denominator of the Hastings ratio206

when the exact posterior density cannot be computed. For the simple example, this allows207

us to implement an approximation to the two step MCMC algorithm presented at the start208

of this section which avoids computations which depend on N or M as in RJMCMC and209

DA. We first show how MCWM can be applied to update µ for the simple model and then210

show that our solution also addresses the problem of updating N .211

Consider the MH step for updating µ described on page 8. Given the current value,212

µ(t), a proposal is generated from some distribution, q(µ|µ(t)). This value is then accepted213

with probability α = min(1, r(µ(t), µ′)) where:214

r(µ(t), µ′) =
π(µ′|N (t),Xobs,Y obs)

π(µ(t)|N (t),Xobs,Y obs)
· q(µ

(t)|µ′)
q(µ′|µ(t))

.

In MCWM, the Hastings ratio, r(µ(t), µ′), is replaced by an approximation:215

r̂(µ(t), µ′) =
π̂K(µ′|N (t),Xobs,Y obs)

π̂K(µ(t)|N (t),Xobs,Y obs)
· q(µ

(t)|µ′)
q(µ′|µ(t))

where π̂K(µ′|N (t),Xobs,Y obs) and π̂K(µ(t)|N (t),Xobs,Y obs) represent MC estimates of the216

full conditional density of µ(t) and µ′, as described below (A brief introduction to MC217

integration is also provided in the Supplementary Materials). Approximating the Hastings218

ratio in this way introduces extra variability into the MH algorithm, and the posterior219

distribution is no longer a stationary distribution of the chain. However, Theorem 9 of220
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Andrieu and Roberts (2009) shows that the stationary distribution of the chains generated221

by MCWM approximates the true posterior when the MC estimator is unbiased and the222

size of the MC sample, denoted by K, is large. In essence, if the algorithm is run for223

enough iterations and the MC samples are large enough then the MCWM updater will224

produce values that are approximately, but not exactly, distributed according to the full225

conditional, π(µ|N (t),Xobs,Y obs).226

The remaining challenge in implementing this algorithm is to develop an efficient MC227

estimator of π(µ|N,Xobs,Y obs). The only term in π(µ|N,Xobs,Y obs) which cannot be228

computed directly is Q(µ) = P0(µ)N−n, and so it is sufficient to develop an MC estimator229

for this value alone. An unbiased estimator of Q(µ) can be obtained by generating K sets230

of N − n covariate values:231

x̃ik
iid∼ N(µ, 1), i = 1, . . . , N − n; k = 1, . . . , K

and then setting:232

Q̂(µ) =
1

K

K∑
k=1

(
N−n∏
i=1

(1− p(x̃ik))T
)
.

However, this requires generating N ×K random variables so that the complexity of this233

estimator depends on N – exactly the problem we are trying to avoid. Instead, we propose234

a second MC estimator. Let x̃1, . . . , x̃K
iid∼ N(µ, 1) be a single random sample of size K and235

define:236

P̃0(µ) =
1

K

K∑
k=1

(1− p(x̃k))T .
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The posterior density can then be approximated by replacing P0(µ)N−n with:237

Q̃(µ) =
(
P̃0(µ)

)N−n
=

(
1

K

K∑
k=1

(1− p(x̃k))T
)N−n

.

This produces a biased but consistent estimator of the posterior density, but we conjecture238

that it maintains the overall properties of MCWM described by Andrieu and Roberts239

(2009). We believe that samples produced by the MCWM algorithm using Q̃(µ) as an240

estimator of P0(µ)N−n will still approximate draws from the true posterior distribution for241

large enough K, though this remains to be proved.242

A further advantage of the second MC estimator is that it allows the Gibbs update of243

N to be performed without further computation. Recall that the update of N depends244

only on P0(µ) – exactly the value estimated in our MCWM update of µ. If µ′ is accepted245

then we set ˜P0(µ(t+1)) = ˜P0(µ′). Otherwise we set ˜P0(µ(t+1)) = ˜P0(µ(t)). Our full algorithm246

proceeds by:247

A) Updating µ(t) given N (t) via MCWM:248

1) Propose µ′ ∼ q(µ|µ(t))249

2) Compute MC estimates ˜P0(µ(t)) and ˜P0(µ′), and the corresponding estimates250

π̂K(µ(t)|N (t),Xobs,Y obs) and π̂K(µ′|N (t),Xobs,Y obs).251

3) Accept µ′ and set µ(t+1) = µ′ with probability α̂ = min(1, r̂(µ(t), µ′)) where:252

r̂(µ(t), µ′) =
π̂K(µ′|N (t),Xobs,Y obs)

π̂K(µ(t)|N (t),Xobs,Y obs)
· q(µ

(t)|µ′)
q(µ′|µ(t))

.

Otherwise, set µ(t+1) = µ(t).253
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B) Updating N (t) given µ(t+1) via Gibb’s sampling:254

N (t+1) ∼ Neg. Bin.(n, 1− ˜P0(µ(t+1)))

2.3 Extensions255

We propose two extensions of MCWM that seem to provide more efficient sampling for256

mark-recapture models. The first is to use related samples in computing the MC estimates257

of the posterior density in both the numerator and denominator of the Hastings ratio.258

Consider the simple model. The basic property of location-scale families can be used to259

generate x̃ ∼ N(µ, σ2): if z̃ ∼ N(0, 1) then x̃ = σz̃ + µ ∼ N(µ, σ2). In our implementation260

of the MCWM algorithm, we use a single sample of K independent standard normal261

random variates to estimate both P0(µ
(t)) and P0(µ

′
). Specifically, we generate262

z̃1, . . . , z̃K
iid∼ N(0, 1) and define:263

˜P0(µ(t)) =
1

K

K∑
k=1

(1− p(z̃k + µ(t)))T and ˜P0(µ′) =
1

K

K∑
k=1

(1− p(z̃k + µ′))T .

The advantage is that the MC samples used in the numerator and denominator of r̂(µ(t), µ′)264

have the same quantiles with respect to their corresponding distributions. This ensures265

that extreme values do not occur in one of the MC samples alone and seems to improve266

mixing. The same procedure can also be applied using uniform random variates and the267

probability integral transformation if the distribution of xi is not in a location-scale family.268

The second modification we have tested is to use antithetic sampling in constructing the269

MC estimates. Instead of generating K distinct values from the normal distribution, we270
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generate a random normal sample of size K/2 (assuming K is even), z̃1, . . . , z̃K/2
iid∼ N(0, 1),271

and then set z̃K/2+k = −z̃k, k = 1, . . . , K/2. This induces negative correlation within the272

MC sample and reduces the variance of the MC estimator if the integrand is a monotone273

function of x (see for example Givens and Hoeting, 2012, pg. 187–188). This is true for the274

simple model above and for the model in Section 4 which treats β0 and β1 as unknown.275

Similar methods can also be applied for non-normal covariates and in higher dimensions.276

We refer to the MCWM algorithm combined with antithetic sampling as MCWM/AS.277

3 Simulation Study278

To demonstrate the properties of MCWM, we describe results from a small simulation279

study based on the simple model presented in Section 2.2. We assumed a population of280

N = 1000 individuals and T = 5 capture occasions. We generated 100 data sets each for281

two different values of µ. In the first scenario, we set µ = −1 such that E(pi) = .30 and282

P0(µ) = .25. In the second scenario, we set µ = −3 such that E(pi) = .07 and P0(µ) = .73.283

Samples from the posterior distribution conditional on each simulated data set were284

generated via RJMCMC, DA, MCWM, and MCWM/AS. We also compared the effects of285

varying the size of the super-population for DA and the size of the MC sample for MCWM.286

We first ran RJMCMC for each data set and then applied DA with M equal to r times the287

largest value of N sampled during the RJMCMC algorithm for r = 1, 2, 4. Finally, we288

applied both MCWM and MCWM/AS with MC sample sizes of K = 100, 500, and 1000.289

Each algorithm depends on choices regarding the updaters of µ, N , and the augmented290

data (if applicable). We tried to implement the algorithms as would a relatively291
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experienced user of MCMC. We applied Gibbs sampling steps when possible and otherwise292

used MH steps with standard proposal densities optimized through an adapting phase.293

Complete details of the different algorithms are provided in Table 1. All chains were294

started from the true parameter values to avoid effects of the initial values and were run for295

a total of 55,000 iterations with the first 5000 removed as burn-in. All code was written in296

R and vector calculations were used when possible. An R package containing code is297

available from the first author upon request.298

For each of the two scenarios, we compared the efficiency of the different samplers and299

the accuracy of the estimated posterior summary statistics. Accuracy of the samplers was300

assessed by comparing the location and spread of the sampled values of N . Specifically, we301

compared the bias and mean-squared-error (MSE) of the posterior mean of N :302

Bias(N̂) =
100∑
s=1

(N̂s − 1000) and MSE(N̂) =
100∑
s=1

(N̂s − 1000)2/100

where N̂s represents the posterior mean estimated from the sth simulation and the303

estimated posterior standard deviation of N . Efficiency of the samplers was assessed by304

comparing the effective number of samples for N generated per second (the effective305

sample size of N divided by the runtime of the chain). Simply comparing the runtime for306

the different algorithms is inappropriate because the samples are not independent. A chain307

that runs quickly but has high autocorrelation may be less efficient than a slower chain308

that mixes better. The effective sample size of an MCMC sample is the number of309

independent draws which would be needed to provide the same information about the310

posterior distribution. This value is estimated by fitting an autoregressive (AR) time series311
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model to the sampled chain and then computing the integrated autocorrelation as312

described by Liu (2008, pg. 125–126) and implemented in the coda package in R (Plummer313

et al., 2006). Results are presented in Figures 1 and 2. Complete numerical results are also314

provided in the Supplementary Materials (Table S1).315

Posterior summary statistics produced via RJMCMC and all variants of DA were316

almost identical for all of the 100 data sets in Scenario 1 (µ = −1). The bias of the317

posterior means for RJMCMC and DA ranged between -0.3 to 0.2, and the MSE ranged318

from 63.4 to 65.2. MCWM and MCWM/AS also produced good estimates of the posterior319

means. The bias of these implementations was slightly higher with smaller values of K, but320

with K = 1000 the bias was less than 0.4 and the MSE was 63.4. However, MCWM tended321

to overestimate the posterior variance. Mean posterior standard deviations from RJMCMC322

and DA ranged between 22.3 and 22.6, and MCWM overestimated the posterior standard323

deviation by approximately 1.7 times when K = 100 and 1.1 times when K = 1000.324

However, the problem was almost completely resolved by the use of antithetic sampling.325

MCWM/AS overestimated the posterior standard deviation by approximately 1.1 times326

when K = 100 and almost not at all when K = 1000.327

The clear advantage of both MCWM and MCWM/AS was the gain in efficiency. The328

runtimes for the different variants of MCWM and MCWM/AS were similar to the runtimes329

for RJMCMC and DA with r = 1, but the chains mixed much more quickly. Even with330

K = 1000, MCWM and MCWM/AS were approximately 3.5 times as efficient as the most331

efficient DA algorithm and more than 100 times as efficient as the RJMCMC algorithm.332

Antithetic sampling had little effect on these results. On average, MCWM/AS did run333

slightly faster than MCWM, but the small difference was offset by the change in effective334

18



sample size.335

Results for Scenario 2 (µ = −3) were qualitatively similar. The posterior summary336

statistics produced by RJMCMC and all variants of DA were close. Posterior means from337

these methods were biased by approximately 0.5% due to the influence of the selected prior338

for N which favors smaller values. Once again, MCWM overestimated the posterior mean339

of N when K = 100, and both MCWM and MCWM/AS also overestimated the posterior340

standard deviation for all values of K. However, the error was less than 2% on average for341

MCWM/AS with K = 1000. With K = 500, MCWM/AS continued to produce good342

estimates of the posterior mean and overestimated the standard deviation by only 4% on343

average.344

Mean runtimes for DA and RJMCMC in Scenario 2 were between 1.2 and 1.7 times the345

mean runtimes in Scenario 1. In comparison, the mean runtimes of MCWM and346

MCWM/AS decreased slightly because the speeds of DA and RJMCMC depend on the347

upper bound on N , which increased from Scenario 1 to Scenario 2, while the speeds of348

MCWM and MCWM/AS depend on n, which decreased. Effective sample sizes for all349

algorithms decreased in Scenario 2, but MCWM and MCWM/AS were still more efficient350

than RJMCMC and all variants of the DA algorithm. With K = 1000, MCWM/AS was351

22.0 times as efficient as RJMCMC and 13.0 times as efficient as the best version of DA.352

As before, reducing K to 500 affected the accuracy of the posterior summary statistics353

slightly but increased the efficiency even further so that MCWM/AS was 29.6 times as354

efficient as RJMCMC and 17.5 times as efficient as DA.355

In summary, MCWM/AS with large values of K (500 or 1000) performed well in both356

scenarios. Posterior summary statistics were almost equal to those produced by DA and357
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RJMCMC, but MCWM/AS was much more efficient. Decreasing K reduced the accuracy358

of the estimated posterior summary statistics, in particular the posterior standard359

deviation, but led to a further increase in efficiency. It was surprising that RJMCMC had360

such low efficiency, and we discuss this result further in Section 5.361

[Table 1 about here.]362

[Figure 1 about here.]363

[Figure 2 about here.]364

4 Application365

As an example of these methods, we analyzed data taken from a study of meadow voles366

(Microtus pennsylvanicus) conducted at the Patuxent Wildlife Research Center in 1981 and367

1982 (Nichols et al., 1992). The experiment followed a robust design with 6 primary368

periods each comprising 5 capture occasions. We focus on the final primary period and369

assume that the population was closed over this time. The data from this period contain370

records of 77 voles of which 23 (30%) were captured once and 54 (70%) twice or more. The371

average number of captures per marked vole was 2.7. We consider the average observed372

body mass for each vole as a static individual covariate and ignore issues with censoring373

and rounding discussed by Schofield and Barker (2011).374

The model we fit to this data is the same as the model described in Section 2.2, except375

that we treat all parameters as unknown. This includes abundance, N , the coefficients of376

the logistic model for pi, β0 and β1, and the parameters of the normal distribution for xi, µ377
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and σ2. Once again, we specify a conjugate normal prior for µ and the improper Jeffrey’s378

prior for N . For the remaining parameters, we selected the half t prior with three degrees379

of freedom for σ and independent t priors with three degrees of freedom for both β0 and β1.380

These represent weakly informative priors with most mass near 0 but also with heavy tails.381

In this model, the probability that an individual is never captured is a function of µ,382

σ2, β0, and β1. This requires that MC integration be used to estimate the posterior density383

in the update steps for each of these parameters. In our implementation, we update384

β = (β0, β1)
′ as a single unit, and so our algorithm requires three separate MCWM steps385

per iteration of the MCMC algorithm along with the Gibbs update of N .386

As in the simulation study, we compared i) samples generated via MCWM and387

MCWM/AS with varying values of K, ii) samples from DA with varying values of r, and388

iii) samples from RJMCMC. We again implemented all algorithms using standard updating389

procedures: Gibb’s sampling where possible and MH updates with standard proposals390

otherwise. The algorithms were again implemented in R and chains were run for a total of391

500,000 iterations with a burn-in period of 50,000 iterations. All code is available from the392

first author. Plots of the results are provided in the top half of Figures 3 and 4. Numeric393

summaries are provided in the Supplementary Materials (Table S2).394

Posterior summary statistics from all implementations were almost exactly identical.395

Even with K = 25, MCWM and MCWM/AS provided very accurate results. runtimes for396

the different implementations were also similar, except that MCWM and MCWM/AS both397

took significantly longer when K was large (K = 1000). Once again, the RJMCMC398

implementation mixed slowly and had much lower efficiency than the other algorithms.399

However, MCWM and MCWM/AS provided no advantage over DA. The best DA400
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implementation (r = 2) was in fact 1.1 times more efficient that the best MCWM401

implementation (MCWM/AS with K = 100).402

The MCWM approach is intended to address computational problems that arise with403

DA and RJMCMC when the proportion of individuals captured is small (n much less than404

N), and so we have repeated the analysis with a modified version of the meadow vole data405

constructed by artificially decreasing the capture probability for each marked individual.406

Specifically, we generated new data by 1) replicating the capture histories for each of the 77407

marked voles 5 times, 2) subsampling the captures in the resulting histories with408

probability 0.2, and 3) removing histories with no remaining captures. The resulting data409

contained 159 histories with 122 (77%) individuals being captured once and only 39 (23%)410

twice or more. The average number of captures per marked individual was 1.3. Plots of the411

results are provided in the bottom half of Figures 3 and 4. Numeric summaries are412

provided in the Supplementary Materials (Table S2).413

In this case, posterior means obtained from MCWM were comparable with the other414

methods but the posterior standard deviation was overestimated when K was small. This415

was corrected completely by MCWM/AS, and estimated posterior summary statistics416

obtained from MCWM/AS were indistinguishable from the other methods.417

Once again, the advantage of MCWM is clear. Whereas the runtime of RJMCMC418

increased 1.4 times and the runtime of DA increased between 1.8 and 3.0 times depending419

on r, the runtime of both MCWM and MCWM/AS increased by less than 1.1 time for all420

values of K. As a result, MCWM and MCWM/AS with K = 100 were both approximately421

2.5 times as efficient as RJMCMC and the fastest implementation of DA. Note that the422

efficiency of all of the algorithms, including MCWM and MCWM/AS, decreased423
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significantly with the modified data. This simply reflects the fact that the autocorrelation424

of the Markov chains is higher when n is small.425

[Figure 3 about here.]426

[Figure 4 about here.]427

5 Discussion428

The examples presented in Sections 3 and 4 provide an initial assessment of MCWM for429

fitting mark-recapture models with heterogeneity. As expected, MCWM performed nearly430

as well as the other algorithms when most individuals were marked and was more efficient431

when the proportion of marked individuals was small. Not only was the runtime for432

MCWM smaller in these situations because the computational complexity depends on433

observed sample size, rather than the size of the population or super-population, but the434

chains produced by MCWM also mixed more quickly. The disadvantage is that MCWM435

samples from an approximation to the posterior distribution and the accuracy of the436

posterior summary statistics depends on the MCMC sample size (K). Posterior summary437

statistics will be biased if K is too small, but the algorithm will take a long time to run438

and sampling will be inefficient if K is too large. Selecting an appropriate value for K439

remains as an important question.440

Although the examples presented involved scalar covariates, we intend these methods441

for modeling more complex data with high-dimensional covariates. When capture442

probabilities depend on a scalar covariate the probability that an individual from the443
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population is never captured, P0, could be computed with numerical quadrature (see444

Appendix 1 in the Supplementary Materials). Choquet and Gimenez (2010) and Gimenez445

and Choquet (2010) have used this approach to evaluate the likelihood for mark-recapture446

models with scalar individual random effects. However, quadrature methods with regular447

grids can be inefficient for computing integrals in high-dimensions essentially because the448

integrand may be close to zero at many of the grid points. In these cases, MC integration449

can be more efficient if the sampling distribution concentrates on the regions of the sample450

space where the integrand is non-zero Liu (2008, pg. 32). In future, we will apply MCWM451

to fit both closed and open population models with high-dimensional integrals, focusing452

primarily on data with time-varying, individual covariates as in Bonner and Schwarz453

(2006).454

We believe that the methods presented will be most useful for modeling data from large455

populations in which the overall capture probability is low. Fitting these models with DA456

will require large super-populations and might lead to long runtimes. In these cases,457

MCWM may provide accurate inference in much shorter times allowing users to explore a458

range of models more easily. We also believe that MCWM could provide an alternative to459

DA and CDL methods used to model other complex ecological data (e.g., spatially explicit460

mark-recapture models (Royle et al., 2008) or distance sampling models including461

individual covariates (Royle et al., 2004)).462

We will also investigate further modifications that might improve the accuracy or463

efficiency of MCWM. Using antithetic sampling within the MCWM steps improved the464

accuracy of posterior summary statistics significantly, and further gains may be made by465

incorporating more advanced MC methods. For example, importance sampling could be466
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used to estimate the probability that an individual is never captured. Defining an467

appropriate important sampling distribution a priori will be difficult, but this could be468

chosen through an adaptive scheme. We also plan to explore two related algorithms that469

make use of MC integration within MCMC: the Grouped Independence470

Metropolis-Hastings (GIMH) algorithm (Beaumont, 2003; Andrieu and Roberts, 2009) and471

the Monte Carlo Metropolis-Hastings (MCMH) algorithm (Liang et al., 2010). Incredibly,472

both algorithms produce Markov chains that converge to the exact posterior distribution473

when the MC estimator of the posterior density (GIMH) or MH acceptance ratio (MCMH)474

is unbiasedAndrieu and Roberts (2009). Unfortunately the only unbiased estimator of the475

posterior density we have found requires K samples of size N − n which reintroduces the476

dependence on N (see Section 2.2). Further study is needed to understand the properties477

of these algorithms if a biased but consistent estimator is used instead.478

Finally, the simulation study raised new questions about the RJMCMC and DA479

algorithms. In particular, the efficiency of both algorithms improved in some cases when480

the amount of data augmentation increased. Consider the DA algorithm. Conventional481

wisdom has suggested that M be as small as possible (though it must be big enough not to482

restrict the posterior distribution of N). To avoid penalizing the DA algorithm by selecting483

an arbitrary value we originally set M equal to the largest value of N generated by the484

RJMCMC algorithm (r = 1). We later found that the efficiency of DA could be increased485

with a larger value of M as in simulation Scenario 1 with r = 2. Similarly, we were486

surprised to find that the efficiency of the RJMCMC algorithm was higher in Scenario 2,487

when only 25% of the population was captured, than in Scenario 1, when 75% of the488

population was captured.489
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The increase in the efficiency of DA seems to occur because the chains mix better and490

the effective sample size is larger when M is bigger. We believe that this occurs because a491

larger super-population can generate more populations of size N . This allows the492

composition of the population to change more freely when unobserved individuals are493

drawn from the super-population on each MCMC iteration, and in turn allows for larger494

changes in the model parameters. Although the runtime increases when M increases, the495

computational cost of the vector calculations used to update z and Xmiss
M in our496

implementation of DA increases slowly with M and may be offset if the mixing improves497

sufficiently. Further research is needed to determine if the same result occurs with other498

software and if there is an optimal value for the size of the super-population.499

The problem is harder to address for RJMCMC because the amount of augmentation is500

not pre-determined. More efficient variants of RJMCMC might be implemented using501

different proposal distributions for N . Our proposal distribution is based on King and502

Brooks (2008), except that we adapted the width of the uniform distribution to produce an503

acceptance rate near 50%. In some cases, the proposal distribution was very limited and N504

could not change by more than 1 or 2 on each iteration. Skewed distributions which allow505

for occasional large jumps might improve the efficiency, and further research is needed to506

identify optimal proposal distributions.507
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Figure 1: Simulation Results 1 – Posterior Summaries. Distributions of the error in the
posterior mean (top) and the posterior standard deviations (bottom) of N for Scenario
1 (blue symbols) and Scenario 2 (red symbols) for the different MCMC implementations.
Points in each plot represent the mean value over all 100 simulated data sets. These values
are also provided numerically. Error bars connect the largest and smallest values over the
100 simulated data sets.
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Figure 2: Simulation Results 2 – Efficiency. Comparisons of the runtime in minutes (top)
and log efficiency for sampling N (effective sample size/second) of the different MCMC
implementations for Scenario 1 (blue symbols) and Scenario 2 (red symbols). The points
represent the mean runtime/efficiency over the 100 replicate data sets. These values are also
provided numerically. The error bars extend to the limits of the runtime/efficiency observed
over the 100 simulated data sets.
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Figure 3: Application Results 1 – Posterior Summaries. Comparison of the posterior distri-
bution for the original meadow vole data (blue symbols) and the modified data (red symbols)
for the different MCMC implementations. The estimated posterior mean for each implemen-
tation is represented by the point with 95% credible interval represented by the error bar.
Values above the error bars indicate the estimated posterior standard deviation.
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Figure 4: Application Results 2 – Efficiency. Comparison of the runtime (top) and efficiency
(bottom) of the different MCMC implementations in the analysis of the original data (blue
symbols) and modified data (red symbols). The top plot compares the time taken in minutes.
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RJMCMC
Parameter Update Method

µ Gibbs step: µ(t+1) ∼ N
(
ν2

σ2

∑N
i=1 xi, ν

2
)
, where ν2 =

(
1
τ2µ

+ N
σ2
x

)−1
N RJ step with proposal:

N ′ ∼ U{N (t) − r, . . . , N (t) − 1, N (t) + 1, . . . , N (t) + r}

xi MH step with proposal xi ∼ N(µ, 1)

DA
Parameter Update Method

µ Gibbs step: µ(t+1) ∼ N

((
σ2
x

τ2µ
+M

)−1∑M
i=1 xi,

(
1
τ2µ

+ M
σ2
x

)−1)
ψ Gibbs step: ψ ∼ Beta(α +

∑M
i=1 zi, β +M −

∑M
i=1 zi)

xi MH step with proposal xi ∼ N(µ, 1)

zi Gibbs step: zi ∼ Bernoulli
(

ψ(1−pi)T
(1−ψ)+ψ(1−pi)T

)

MCWM
Parameter Update Method

µ MCWM step with proposal µ′ ∼ N(µ(t), ξ2µ).

N Approximate Gibbs step: N ∼ Neg. Bin(n, 1− P̂0(µ))

Table 1: Implementations choices for the variants of the MCMC algorithms. The three sec-
tions of the table describe the updates for each parameter in RJMCMC (top), DA (middle),
and MCWM (bottom). The implementation of MCWM/AS was the same as MCWM except
that antithetic sampling was used to estimate the posterior density in the MCWM update
of µ.
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