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Summary

1. Mark-recapture studies that rely on multiple marks to identify individuals pose

modeling challenges if the marks for each individual are not always linked. If an

individual with unlinked marks is encountered on two occasions and different marks

are observed then it will appear that two different individuals were captured. Failing

to account for these missed matches will produce incorrect inference.

2. Madon et al. (2011) proposes a modification of the Jolly-Seber estimator for such

data computed by adjusting the observed counts of individuals first captured,

recaptured, or not captured but known to be alive on each occasion. The adjustment

involves multiplying each of these counts by a constant factor, Iid, intended to correct

for double counting of individuals and constrained between 0 and 1. Results of a

simulation study provided in Madon et al. (2011) show that the proposed estimator is

almost unbiased, but its uncertainty is underestimated and the true coverage of

confidence intervals is consistently below the nominal value.

3. I compute separate adjustment factors for each of the counts and show 1) that a

constant adjustment is not appropriate and 2) that the theoretical adjustment factor

is sometimes greater than 1. I believe that the use of a single adjustment factor

between 0 and 1 is what causes the uncertainty to be underestimated and that

complete models of the observation process are required to obtain valid results.
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Natural or non-invasive marks, including skin patterns and genetic markers, allow

individuals to be identified in mark-recapture studies without applying man-made tags.

However, data from natural marks also present novel statistical challenges. One challenge

that has seen little discussion concerns inference from data that include multiple natural

marks that cannot be linked unless they are observed together. This occurs if, for example,

individuals are identified from skin patterns on different parts of the body or separately

from both photo-identification of skin patterns and from genetic markers. Marks for one

individual may not be linked, meaning that it is not always possible to determine if, say, a

photo taken on one occasion and a genetic sample collected on another occasion represent

the same individual or two different individuals. Analyzing the data without accounting for

the possibility of missed matches will erroneously inflate the number of individuals

encountered and create dependence between the histories, violating a key assumption of

most mark-recapture models. Madon et al. (2011) proposes a method for estimating

abundance from such data using an adjusted version of the Jolly-Seber (JS) estimator.

However, the results of the simulation study provided in Madon et al. (2011) suggest that

the method does not perform well. Though the adjusted JS estimator is approximately

unbiased, its sampling variance is consistently underestimated particularly when capture

probabilities are high. The average coverage probability of the 95% confidence intervals is

.84 when data are simulated from the true model with capture probability .05 but only .45

when the capture probability is .80 (Madon et al., 2011, Table 2). That the coverage

probabilities are worse when capture probabilities are higher – i.e. when the data contain

more information – is disturbing and 95% confidence intervals with coverages as low as

45% will provide misleading information for biologists trying to understand or manage a
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population. I believe that these results stem from errors in the derivation of the adjusted

JS estimator which I discuss below.

The specific objective of Madon et al. (2011) is to estimate the number of humpback

whales breeding around the island of New Caledonia each year between 1996 and 2001.

Data come from a study in which whales were identified from both photo-identification of

skin patterns (mark 1) and collection of DNA samples (mark 2). Sampling occurred from

July to September and it is assumed that individuals can only be encountered once each

year. Each year, one of four events may occur:

0) the individual is not encountered,

1) the individual is encountered and only mark 1 is seen,

2) the individual is encountered and only mark 2 is seen,

3) the individual is encountered and both marks are seen together.

The key assumption is that the two marks for an individual can be matched only if both

are seen together in at least one year. If this occurs then I say that the individual’s marks

are linked. If it does not then I will say that the individual’s marks are not linked. If an

individual’s marks are linked (i.e., event 3 occurs in the encounter history) then its true

capture history can be known with certainty. However, if an individual’s marks are not

linked and both of its marks were observed on separate occasions then it will contribute

two separate histories to the observed data. For example, an individual with the true

history 01120 will contribute the histories 01100 and 00020 to the observed data – exactly

as if two different individuals had been encountered.
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The primary challenge with modeling such data is not to provide point estimates of the

demographic parameters (e.g., the population size) but rather to compute appropriate

measures of precision. Suppose that individuals can be identified by one of p marks. A

simple estimator of population size combining the data from all marks is given by obtaining

separate estimates for each mark, N̂1, . . . , N̂p, and then computing the weighted average

N̂ =

p∑
m=1

wmN̂m

for some set of positive weights such that
∑p

m=1wm = 1. The bias of this estimator will be

the weighted average of the bias of the separate estimators, and N̂ will be

unbiased/consistent if each N̂m is unbiased/consistent. However, the standard error of N̂ is

difficult to compute because the separate estimates N̂1, . . . , N̂p are dependent but their

correlations are unknown. Wilson et al. (1999) describes an application of this method for

two marks using inverse variance weights so that wm ∝ 1/V̂ar(N̂m), m = 1, 2. The variance

of N̂ is then approximated by treating N̂1, . . . , N̂p as independent so that

V̂ar(N̂) =
∑p

m=1w
2
mV̂ar(N̂m), but this is not appropriate and V̂ar(N̂) will be biased low.

To account for the possibility that some whales contribute multiple encounter histories

to the New Caledonia humpback data, Madon et al. (2011) proposes an adjustment of the

JS estimator of abundance. Specifically, Madon et al. (2011) builds on the bias-corrected

version of the JS estimator, assuming no losses on capture, given by

N̂i =
mi + Ui + 1

mi + 1
· mi + Ui + 1

ri + 1
· zi
mi
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where

• Ui is the number of individuals first encountered on occasion i,

• mi is the number of individuals encountered both before and on occasion i,

• ri is the number of individuals encountered both on and after occasion i, and

• zi is the number of individuals encountered both before and after but not on occasion

i.

Uncertainty in matching observed histories with different marks means that these counts

cannot be known, and so Madon et al. (2011) attempts to adjust these values before

computing N̂i.

Consider mi. This quantity cannot be observed because it is not always possible to

know whether or not an individual encountered on occasion i was previously encountered.

For example, if an individual’s true history was 01200 then it is truly encountered both

before and on occasion 3, but this cannot be known because its marks are not linked. This

individual will be mistakenly excluded from the observed count of m2. To account for such

errors, Madon et al. (2011, eqn 4) replaces mi with

mi ≈ m∗
i,3 + (m∗

i,1 + m∗
i,2)Iid (1)

where

• m∗
i,1 represents the number of individuals for which mark 1 was seen prior to occasion

i and mark 1 was seen on occasion i and whose marks are not linked,

6



• m∗
i,2 represents the number of individuals for which mark 2 was seen prior to occasion

i and mark 2 was seen on occasion i and whose marks are not linked, and

• m∗
i,3 represents the number of individuals encountered before and on occasion i whose

marks are linked.

The raw sum m∗
i,1 + m∗

i,2 + m∗
i,3 is the number of individuals known to be captured both

before and on occasion i, and Iid is an adjustment factor intended to account for the

difference between this value and the true number of individuals recaptured. It is described

as the “Probability of true identity” (Madon et al., 2011, pg. 3) and assumed to be between

0 and 1. The same adjustment is also used for Ui, ri, and zi so that (Madon et al., 2011,

eqns 5, 6, and 7)

Ui ≈ U∗
i,3 + (U∗

i,1 + U∗
i,2)Iid (2)

ri ≈ r∗i,3 + (r∗i,1 + r∗i,2)Iid (3)

zi ≈ z∗i,3 + (z∗i,1 + z∗i,2)Iid (4)

where U∗
i,j, r

∗
i,j, and z∗i,j are defined analogously to m∗

i,j, j = 1, 2, 3. My concerns with these

adjustments are 1) that all counts are adjusted by the same factor and 2) that Iid is

assumed to be less than 1. I show below that the correct adjustment factors for the

different counts are not the same and that some of the observed counts may underestimate

the true counts so that the correct adjustment factor may be greater than 1.

To illustrate my concerns, I derive adjustment factors for m2, U2, r2, and z2 for the

specific case of an experiment with 3 occasions. In the following discussion, I use
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n(ω1, ω2, ω3) to denote the number of individuals whose true encounter history is

ω = (ω1, ω2, ω3). Events on each occasion are represented using the notation on page 4. For

convenience, I use −3 to represent any event except 3; so that, e.g.,

n(−3, 1, 1) = n(0, 1, 1) + n(1, 1, 1) + n(2, 1, 1). Note that some of these counts cannot be

observed. For example, n(0, 1,−3) and n(2, 1,−3) cannot be distinguished even though

their sum is known.

Consider m2. The true number of individuals encountered both before occasion 2 and

on occasion 2 is

m2 = n(1, 1,−3) + n(1, 2,−3) + n(2, 1,−3) + n(2, 2,−3) + m∗
2,3. (5)

From the definitions above

m∗
2,1 = n(1, 1,−3) and m∗

2,2 = n(2, 2,−3). (6)

Substituting (5) and (6) into (1) and solving for Iid then yields

Imid =
n(1, 1,−3) + n(1, 2,−3) + n(2, 1,−3) + n(2, 2,−3)

n(1, 1,−3) + n(2, 2,−3)

= 1 +
n(1, 2,−3) + n(2, 1,−3)

n(1, 1,−3) + n(2, 2,−3)

(7)

Note that Imid ≥ 1. In general, errors in counting the number of individuals encountered

both before and on occasion i occur because different marks were seen and the encounters

cannot be linked. This means that the observed value underestimates the true value of mi

and should be adjusted upward.
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Next consider the count of individuals first encountered on occasion 2, U2. The true

value is

U2 = n(0, 1,−3) + n(0, 2,−3) + U∗
2,3 (8)

whereas

U∗
2,1 = n(0, 1,−3) + n(2, 1,−3) and U∗

2,2 = n(0, 2,−3) + n(1, 2,−3) (9)

Substituting (8) and (9) into (2) then yields

IUid =
n(0, 1,−3) + n(0, 2,−3)

n(0, 1,−3) + n(2, 1,−3) + n(0, 2,−3) + n(1, 2,−3)

= 1− n(2, 1,−3) + n(1, 2,−3)

n(0, 1,−3) + n(2, 1,−3) + n(0, 2,−3) + n(1, 2,−3)

(10)

Clearly IUid 6= Imid and IUid ≤ 1. In general, errors in counting the number of individuals first

encountered on occasion i occur because some individuals were actually encountered before

but the marks seen before and on occasion i were not the same and are not linked. This

leads to overcounting of the number of individuals first encountered on occasion i so that

the observed count should be reduced.

Theoretical correction factors for r2 and z2 can be computed in the same way. The

adjustment factor for r2 is

Irid =
n(−3, 1, 1) + n(−3, 1, 2) + n(−3, 2, 1) + n(−3, 2, 2)

n(−3, 1, 1) + n(−3, 2, 2)

= 1 +
n(−3, 1, 2) + n(−3, 2, 1)

n(−3, 1, 1) + n(−3, 2, 2)

(11)

Then Irid 6= Imid , Irid 6= IUid, and again Irid ≥ 1. Generally, the number of individuals

encountered on and after occasion i is under-counted because some individuals with
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unlinked marks are missed. Finally, the adjustment factor for z2 is

Izid =
n(1, 0, 1) + n(1, 0, 2) + n(2, 0, 1) + n(2, 0, 2)

n(1, 0, 1) + n(2, 0, 2) + n(1, 2, 1) + n(2, 1, 2)

= 1 +
[n(1, 0, 2) + n(2, 0, 1)]− [n(1, 2, 1) + n(2, 1, 2)]

n(1, 0, 1) + n(2, 0, 2) + n(1, 2, 1) + n(2, 1, 2)
.

(12)

This value may be either greater or less than 1 depending on whether the number of

individuals mistakenly included in z2 and doubly counted, n(1, 2, 1) + n(2, 1, 2), is bigger or

smaller than the number of individuals mistakenly excluded from z2, n(1, 0, 2) + n(2, 0, 1).

Equations (7), (10), (11), and (12) for a study with 3 occasions make it clear that the

proper adjustment factors for m2, U2, r2, and z2 are not the same and are not all

constrained to (0, 1). The expressions for studies with more capture occasions are more

complicated but the same results hold in general. Given these results, it is not surprising

that the variance of N̂i is underestimated when the adjustment factors are all assumed to

be equal and less than 1. Of course, the correct factors cannot be computed explicitly

because they depend on counts of individuals with unlinked marks that cannot be observed

like n(2, 1,−3), n(−3, 1, 2), and n(1, 0, 2). To compute valid adjustment factors one would

need to estimate these quantities by modeling the observation process, and so I recommend

a model based approach. Maximum likelihood estimation provides one solution but is

complicated because the exact likelihood can only be computed by summing over all

possible configurations of the true histories, and this set may be very complicated. An

alternative is to apply a Bayesian complete-data likelihood approach treating the counts of

the true histories as a latent-multinomial process, as in Link et al. (2010). Bonner and

Holmberg (2012) examines this approach using Markov chain Monte Carlo to sample
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simultaneously from the posterior distribution of both the model parameters and the

configuration of the true encounter histories. Advantages of this approach are that it

provides valid interval estimates with nominal coverage, and also produces inference about

the population dynamics (e.g., survival probabilities, recruitment probabilities, and

population growth rates) as well as population size. Furthermore, the model of Bonner and

Holmberg (2012) allows for individuals to be encountered multiple times during each

capture occasion. Though this is not a problem with the method of Madon et al. (2011) if

capture occasions are instantaneous, the assumption that humpback whales are

encountered only once each year seems restrictive given that sampling occurs for 3 months

of the year.
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