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The latent multinomial model (LMM) of Link et al. (2010) pro-8

vides a framework for modelling mark-recapture data with potential9

identification errors. Key is a Markov chain Monte Carlo (MCMC)10

scheme for sampling configurations of the latent counts of the true11

capture histories that could have generated the observed data. As-12

suming a linear map between the observed and latent counts, the13

MCMC algorithm uses vectors from a basis of the kernel to move be-14

tween configurations of the latent data. Schofield and Bonner (2015)15

shows that this is sufficient for some models within the framework16

but that a larger sets called Markov bases are required with complex17

types of errors. We address two further challenges: 1) that models18

with complex error mechanisms may not fit within the LMM frame-19

work and 2) that Markov bases can be difficult to compute for studies20

of even moderate size. We extend the framework to model the cap-21

ture/demographic and error processes separately and develop a new22

MCMC algorithm using dynamic Markov bases. Our work is mo-23

tivated by a study of Queen snakes (Regina septemvittata) and we24

use simulation to compare estimates of survival rates when snakes25

are marked with PIT tags which have perfect identification versus26

brands which are prone to error.27

1. Introduction. Standard models for data from studies of marked in-28

dividuals require that researchers are able to identify captured individuals29

uniquely and without error. However, these assumptions may be violated30

in many ways. Researchers may misread marks and provide partial identifi-31

cations based on visual sightings or poor quality photographs (McClintock32

et al., 2014; Morrison et al., 2011), allelic dropout may lead to incorrect iden-33

tifications from DNA samples (Barker et al., 2014; Lukacs and Burnham,34

2005; Wright et al., 2009; Yoshizaki et al., 2011), man-made tags may be35

lost or degrade (Cowen and Schwarz, 2006), and natural marks may evolve36

over time (Yoshizaki et al., 2012). This paper continues our investigation of37

the application of methods from algebraic statistics to models allowing for38

possible identification errors in mark-recapture type data.39
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Our work is based on the latent multinomial model (LMM) first intro-40

duced by Link et al. (2010). Key to this approach was a novel Markov chain41

Monte Carlo (MCMC) algorithm for sampling configurations of the true42

captures consistent with the observed data. In Schofield and Bonner (2015),43

we showed that the original algorithm proposed by Link et al. (2010) may44

produce Markov chains that are not irreducible and hence fail to sample45

from the set of all configurations with positive probability under the poste-46

rior distribution. We described an extended MCMC algorithm incorporating47

Markov bases to address this issue. As one example, we presented simula-48

tion results from a model which we called the band-read error (BRE) model.49

Our original manuscript did not provide details on the implementation of50

the BRE model and, for simplicity, we ignored population demographics as-51

suming instead that all configurations of the latent counts consistent with52

the observed data were equally likely. In fact, the BRE model cannot easily53

be fit with the original LMM. Here we describe an extension of the LMM54

framework that is needed to fit the BRE model and other models with more55

complex types of errors than those considered by Link et al. (2010). We also56

address a second, practical challenge which is that Markov bases for the BRE57

model can only be computed for very small experiments with four capture58

occasions or less. Although we focus on the BRE model, the methods we59

develop are applicable to all models within the LMM framework including60

model Mtα and the multiple mark models of Bonner and Holmberg (2013);61

McClintock et al. (2013).62

2. The Latent Multinomial Model. The LMM of Link et al. (2010)63

accounts for possible errors in the data by recasting the mark-recapture64

model as a missing data problem. Suppose that individuals are sampled from65

the population on T capture occasions. On each occasion, the individuals66

are identified, marked if necessary, and returned to the population. Let nTot67

be the number of distinct individuals captured. The raw data consist of nTot68

vectors in {0, 1}T , called the capture histories, such that ωit = 1 if individual69

i was captured on occasion j. If T = 5 then the history ωi = 01010 indicates70

that the ith marked individual was captured on occasions 2 and 4. We use I to71

denote the number of unique capture histories that can be observed during72

the experiment. If the population is homogeneous then the probabilities73

assigned to each capture history are the same for all individuals and the74

I-vector of counts, n, recording the number of times each unique history75

was observed is sufficient. The likelihood is then defined by the distribution76

of n.77

When errors occur the distribution of n may be difficult to compute78
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directly. To make the likelihood tractable, the LMM introduces a set of79

J > I latent histories identifying the true captures for each individual and80

describing what errors occurred. Let x be the unobserved J-vector of counts81

for the latent histories which is modelled by f(x|θ)1 for some vector of82

parameters, θ. The likelihood can then be computed by summing f(x|θ)83

over all values of x consistent with n. In particular, the LMM assumes that84

n is a linear function of x so that n = Ax for some known I × J matrix A85

and86

(1) f(n|θ) =
∑

x∈NJ

1(n = Ax)f(x|θ) =
∑

x∈Fn

f(x|θ)

where Fn = {x ∈ N
J : n = Ax} denotes the inverse image of n (called the87

n-fibre in algebraic statistics) and N = {0, 1, 2, . . .}.88

As an example, Link et al. (2010) considered a closed population model89

which they called model Mtα. This model assumes that that all individuals90

have the same probability of capture on occasion t, denoted by pt, that91

errors occur independently with probability 1−α each time an individual is92

captured, and that these errors result in new identities that are not observed93

otherwise. The latent histories for this model include the 3T strings formed94

by the events:95

0 – indicating that the individual was not captured,96

1 – indicating that the individual was captured and correctly identified, and97

2 – indicating that the individual was captured and incorrectly identified.98

For example, the latent history νi = 01020 indicates that individual i was99

captured and correctly identified on occasion 2 and recaptured and misiden-100

tified on occasion 4. It is assumed that x|p, α follows a multinomial dis-101

tribution conditional on the true population size, N , with cell probability102

corresponding to the latent history ν computed as103

f(ν|p, α) =
T
∏

t=1

[

p
1(νt>0)
t (1− pt)

1(νt=0)α1(νt=1)(1− α)1(νt=2)
]

where 1(·) is the indicator function.104

Although equation (1) makes it easier to compute f(n|θ) in theory, Fn105

is often so large that exact computation is not practical. Instead, Link et al.106

(2010) proposed a Bayesian solution implemented by sampling from the107

joint posterior distribution of x and θ. The specific MCMC algorithm uses108

1Throughout we use f(y|β) to denote the assumed model of y given parameters β,
π(β) the prior distribution for β, and π(β|y) the posterior distribution of β given y.
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a block Metropolis-Hastings (MH) approach and the main challenge lies in109

constructing proposals of x|θ,n which fall inside the fibre. The algorithm110

starts by defining a lattice basis for the kernel of A; that is, a linearly111

independent set B = {b1, . . . , bK} such that ∀b ∈ ker(A)
⋂

Z
J there exists112

c1, . . . , cK ∈ Z so that113

b =

K
∑

k=1

ckbk.

A proposal, xprop, is then constructed by adding an integer multiple of one114

of the basis vectors to the current value of x. The magic of this approach is115

that any proposal is guaranteed to satisfy the linear constraint and to have116

integer entries. Note, that xprop may still fall outside Fn since there is no117

guarantee that xpropj ≥ 0 for every j.118

Link et al. (2010) implied that Markov chains constructed with this algo-119

rithm would connect all elements in Fn and hence be irreducible. In Schofield120

and Bonner (2015), we showed that this is true for model Mtα provided that121

the right lattice basis is chosen and extended this result to a broader class122

of models containing what we called simple corruptions. However, we also123

provided examples of more complicated models for which the algorithm does124

not produce irreducible Markov chains, including the BRE model. The cen-125

tral problem is that some pairs of elements in Fn may be connected by this126

algorithm only by passing through intermediate configurations containing127

negative entries. These elements have zero probability under the posterior,128

and so the chain will never follow these paths.129

Irreducible chains can always be produced by adding linear combinations130

of all elements in B simultaneously, but the resulting proposals are likely131

to fall outside of Fn and Diaconis and Sturmfels (1998) reported that this132

method is not efficient. Instead, Diaconis and Sturmfels (1998) suggested133

using the one-at-a-time algorithm but drawing the elements from a larger134

subset M ⊂ ker(A) chosen to ensure that it is possible to move between any135

two elements of Fn. Diaconis and Sturmfels (1998) called M a Markov basis136

and the elements of M moves, and provided methodology for computing this137

set based on the theory of toric ideals. For simplicity, we consider the special138

case of the algorithm presented in Schofield and Bonner (2015) in which139

one element is selected from M on each iteration of the MCMC algorithm140

and either added to or subtracted from the current configuration without a141

multiplier. Details are provided in Algorithm 1.142

3. Data. As an example, we consider data from a study of queen snakes143

conducted in Jessamine County, Kentucky. An initial sample of 61 snakes144

was captured and marked in the fall of 2013 and a second sample of 41 snakes145
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Define a Markov basis, M.
Initialise θ(0) and x(0) so that n = Ax(0).
Set k = 1.

1. Update θ conditional on x(k−1). Call the result θ(k).

2. Update x conditional on θ(k).

i) Sample b uniformly from M and c uniformly from {−1, 1}.

ii) Set xprop = x(k−1) + cb.

iii) Calculate the Metropolis acceptance probability:

r(x(k−1),xprop|θ(k)) = min

{

1,
π(xprop|θ(k))

π(x(k−1)|θ(k))
·
q(x(k−1)|xprop)

q(xprop|x(k−1))

}

.

where q(x′|x) is the probability of proposing x′ given the current state x.

iv) Set x(k) = xprop with probability r. Otherwise, set x(k) = x(k−1).

3. Increment k.

Algorithm 1: MCMC algorithm for sampling from the joint posterior
distribution of θ and x given a fixed Markov basis, M.

was marked in the spring of 2014. All snakes were implanted with PIT tags146

and a subset of 73 snakes were also branded with unique marks as described147

in Winne et al. (2006). In the summer of 2014, two technicians visited the site148

to locate and identify snakes approximately every two weeks. On each visit149

the technicians conducted searches using a PIT receiver and attempted to150

physically capture any snakes that were detected so that their brands could151

be read. The 102 snakes were re-encountered 191 times in total, an average152

of 1.87 per snake. The study is aimed primarily at modelling the survival and153

movements of the snakes in this population and in understanding impacts of154

snake fungal disease, an emerging pathogen about which little is yet known155

(Allender et al., 2013; Sleeman, 2013). For illustration, we focus on modelling156

the apparent over-wintering survival, the probability that a snake marked157

in the fall of 2013 is still in the population in 2014.158

Previous studies have found that snakes may expel PIT tags (e.g. Roark159

and Dorcas, 2000) and some loose tags were found at the study site. How-160

ever, we believe that the rate of expulsion is small and there is no reason to161

think that PIT tags are ever misidentified. With these assumptions capture162

histories formed using the PIT tag encounters can be modelled with stan-163

dard Cormack-Jolly-Seber (CJS) type models ignoring identification errors164

and tag loss (see Lebreton et al., 1992; Seber, 2002; Williams, Nichols and165

Conroy, 2002, and references therein). An introduction to the CJS model is166

provided in Appendix A. We use the common notation pt and φt to denote167
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the capture and survival probabilities.168

In comparison, brands can be difficult to read and the identification of169

physically captured snakes is prone to error. A total of 9 branded snakes170

were recaptured physically during the summer of 2014. By comparing with171

the PIT tag records we knew that the first technician identified 8 of 9 (89%)172

correctly while the second technician identified only 6 of 9 (67%) correctly.173

The small number of physical recaptures did not allow us to compare results174

based on the PIT tag and brand data directly. Instead, we examine the175

feasibility of branding snakes by analysing simulated data generated with176

survival and capture probabilities obtained from the PIT tag data and error177

rates matching those observed from the two technicians.178

4. Model. The specific model we consider both for generating and179

analysing the simulated data combines the standard CJS model for the de-180

mographic and capture processes and the BRE model of the errors. We call181

this combined model the CJS/BRE model. Suppose that researchers visit a182

location on T occasions. On each visit they capture a number of unmarked183

individuals, mark them, and return them to the population. At the same184

time, the researchers also conduct surveys to identify previously marked185

individuals. The assumptions of the BRE model are that:186

1. all individuals are correctly identified when first captured and marked,187

2. recaptured individuals are correctly identified with probability α on188

each occasion,189

3. errors cause one marked individual to be misidentified as another190

marked individual, and191

4. each individual can be involved in only one event on each occasion. In192

particular, it is not possible to mistake individual j for individual i if193

individual i has been captured on the same occasion.194

Assumption 3 contrasts directly with the assumptions of model Mtα and195

is justified by the differences between man-made marks and natural marks.196

Model Mtα is intended for use with natural marks including genotypes and197

pigmentation patterns. The set of possible natural marks is usually unknown198

and the number of possible marks is so large that it is unlikely for an er-199

ror to reproduce the identity of another individual exactly. On the other200

hand, the BRE model is intended for use with man-made marks. The set201

of possible marks is known when using man-made marks, and this means202

that erroneous sightings of marks which have never been released can be203

detected and removed from the data prior to the analysis. The only errors204

that cannot be detected occur when one marked individual is mistaken for205

another marked individual. The fourth assumption is not realistic, but sim-206
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plifies the model and we will work to relax this in future work. We present207

the likelihood for this model in Section 5.1 after introducing the extended208

modelling framework.209

5. Methods.210

5.1. Extended Framework. The first challenge is that the CJS/BREmodel211

does not fit easily in the framework of the LMM. Link et al. (2010) focused on212

models, like Mtα, for which x follows a multinomial distribution. Although213

they suggested that the methods could be applied more generally examples214

were not provided. The CJS/BRE model does not result in a multinomial215

distribution for x, and it is difficult to determine the density of x explicitly.216

To address this, we extend the LMM to include a second vector of latent217

counts. This allows the mark-recapture process and the error mechanism218

to be modelled separately. Suppose, for example, that an experiment has219

T = 2 occasions and individual i is captured on both occasions, correctly220

identified on the first occasion, and identified as an entirely new individual221

on the second occasion (this is the error mechanism for model Mtα). In the222

terminology of Link et al. (2010), individual i would have latent history223

νi = 12 and would produce the recorded histories ωi1 = 10 and ωi2 = 01.224

The original LMM assigns probabilities to the latent histories, νi, directly by225

simultaneously modelling the capture and error processes. Our formulation226

introduces a second latent history, ξi, identifying the occasions on which227

the individual was truly captured but ignoring the errors. The new latent228

history would be ξi = 11 since the individual was truly captured on both229

occasions. We then model the joint distribution of νi and ξi by assigning230

probabilities first to ξi and second to νi given ξi. We distinguish between231

the two sets of latent histories by calling νi the latent error history and ξi232

the latent capture history.233

Generally, we let n be the I-vector of counts for the observable histories,234

x the J-vector of counts for the latent error histories, and z the K-vector of235

counts for the latent capture histories. As in Link et al. (2010), we assume236

that n = Ax for some known matrixA. Further, we assume that z = Bx for237

some known matrix B. The complete data likelihood is then constructed in238

two stages: 1) modelling the process of capturing, marking, and recapturing239

individuals to define f(z|θ) and 2) modelling the error process conditional240

on the true captures to define f(x|z,θ). We expect the parameters in the241

two components to be disjoint and label them as θ1 and θ2. The posterior242

distribution of the complete data and parameters is243

π(x,θ1,θ2|n) ∝ 1(n = Ax)f(x|z,θ2)f(z|θ1)π(θ1)π(θ2)
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where π(θ1) and π(θ2) represent priors assumed to be independent. For244

convenience we identify entries in the vectors of counts, n, x, and z, both by245

index and by the corresponding history. For example, ni represents the count246

for the ith element of n using some implicit ordering while nω represents247

the count of history ω. This allows us to define sums in two equivalent ways248

as either nTot =
∑I

i=1 ni or nTot =
∑

ω∈{0,1}T /0 nω. A table summarising249

our notation for the extended LMM is provided in Appendix B.250

To fit the CJS/BRE into the extended framework we need to 1) identify251

the sets of observable histories, latent error histories, and latent capture his-252

tories, 2) construct the constraint matrices, and 3) define the components253

of the likelihood function. As with the CJS model, the set of observable254

histories includes the I = 2T − 2 in {0, 1}T excluding the zero history and255

the history ending with a single capture. The latent capture histories also256

belong to the same set so that K = 2T − 2 as well. In defining the latent257

error histories, four events can occur on each occasion after an individual is258

marked. The ith individual may be not resighted (event 0), resighted and259

correctly identified (event 1), or resighted and incorrectly identified (event260

2). Finally, another marked individual may be captured and incorrectly iden-261

tified as individual i (event 3). Events 2 and 3 represent false negative and262

false positive resightings. A total of 4T possible histories can be constructed263

from these events but many of these can be ignored in the likelihood. We first264

remove the zero history and the three histories with a single non-zero event265

on the final occasion, since these histories do not contribute to the likelihood266

of the CJS model. Assuming that individuals are correctly identified when267

first captured we can also ignore any history whose leading non-zero entry268

is not 1. This leaves J = (4T − 4)/3 that contribute to the likelihood.269

Next, we construct the constraint matrices. One factor that makes the270

CJS/BRE model more complicated than model Mtα is that it contains con-271

straints on x beyond those imposed by the observed counts. In particular,272

the number of false positive and false negative captures on occasion t must273

be the same for all t = 2, . . . , T . The A matrix is constructed as274

A =

[

A1

A2

]

where A1 is a (2T −2)×J matrix modelling the relationship between x and275

n that is defined similar to the matrix A′ in Link et al. (2010), and A2 is a276

(T − 1)× J matrix constraining the number of false positives and negatives277

on the final T − 1 occasions. Mathematically,278

A1ij =

{

1 if ωit = 1(νjt = 1) + 1(νjt = 3) for all t = 1, . . . , T
0 otherwise
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and279

A2tj =







−1 if νj,t+1 = 2
1 if νj,t+1 = 3
0 otherwise

The tth row of A2 computes the difference between the number of 2s and280

3s in the latent error histories, and the vector n must also be extended by281

concatenating T − 1 extra 0s corresponding to the added constraints. The282

matrix B is defined such that Bjk = 1 if the jth latent capture history has283

the same pattern of captures as the kth latent error history. That is284

Bjk =

{

1 if ξkt = 1(νjt = 1) + 1(νjt = 2) for all t = 1, . . . , T
0 otherwise

.

Finally, we define the distributions of z and x|z. For the CJS/BRE model285

θ1 = {φ,p} and θ2 = {α}. Let at denote the number of individuals first cap-286

tured and marked on occasion t,Mt the number of individuals marked before287

occasion t, and mt the number of these individuals resighted on occasion t.288

Then z is product multinomial with density289

(2) f(z|φ,p) =

∏T−1
t=1 at!

∏K
k=1 zk!

K
∏

k=1

f(ξk|φ,p)
zk

where f(ξk|φ,p) denotes the probability assigned to history ξk by the stan-290

dard CJS model. To construct the second component of the likelihood we291

consider occasions t = 2, . . . , T separately first modelling the number of er-292

rors that occur,et(x) =
∑J

j=1 xj1(νjt = 2) =
∑J

j=1 xj1(νjt = 3), and then293

modelling the exact configuration of false positives and false negatives given294

e = (e1, . . . , eT )
′ to obtain a specific configuration of x. Under the assump-295

tions in Section 4, et ≤ m∗
t = min(mt,Mt −mt) and follows the (possibly)296

truncated binomial with density297

f(et|z, α) ∝

(

mt

et

)

(1− α)etαmt−et , et = 0, . . . ,m∗
t .

We further assume that all assignments of false positives and false negatives298

are equally likely conditional on et. For each t = 2, . . . , T there are
(

mt

et

)

and299

(

Mt−mt

et

)

ways to select the false negatives and false positives and so300

f(x|e, z) = 1(z = Bx)
T
∏

t=2

[(

mt

et

)(

Mt −mt

et

)]−1

.
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The second component of the likelihood is301

f(x|z, α) = 1(z = Bx)

∏K
k=1 zk!

∏J
j=1 xj !

T
∏

t=2

[

(1− α)etαmt−et

(

Mt−mt

et

)
∑m∗

t

et=0

(

mt

et

)

(1− α)etαmt−et

]

where the initial term accounts for the many relabellings of the marked302

individuals that would produce the same counts in x and z.303

The joint posterior distribution is completed by specifying a prior distri-304

bution. Link et al. (2010) noted that the observed histories contain almost305

no information about the error rate and so assigned α a very informative306

prior. Alternatively, information about α could be obtained from double307

observers or double tags, as in the queen snake study. For convenience,308

we simply fix α to the known value in our analysis of the simulated data309

and remove α from the posterior distribution. Finally, we assume that the310

prior chosen for φ and p is positive over the entire unit hypercube so that311

π(φ,p) > 0 if and only if φ ∈ (0, 1)T−1 and p ∈ (0, 1)T−1. In particular,312

we assume independent, uniform priors in our simulation study such that313

π(φ,p) ∝ 1
(

φ ∈ (0, 1)T−1
)

· 1
(

p ∈ (0, 1)T−1
)

.314

5.2. Dynamic Markov Bases. The second challenge in fitting the CJS/BRE315

model is that the Markov basis grows very quickly with the number of oc-316

casions and could only be computed for small values of T with 4ti2, a com-317

monly used free software package for algebraic statistics (Hemmecke et al.,318

2013). Addition of the second vector of latent counts does not complicate319

matters because z is a deterministic function of x. Consistent proposals for320

x and z could, in theory, be constructed by defining a Markov basis, M,321

sampling a move b ∈ M, and setting xprop = x + b and zprop = Bxprop.322

However, 4ti2 ran out of memory on a computer with 8 GB of RAM before323

completing the calculations when T ≥ 5.324

We avoid this problem by using dynamic Markov bases. Dobra (2012) de-325

fined a dynamic Markov basis to be a collection of sets of local moves, M(x),326

which connect each x ∈ Fn to a relatively small number of neighbours. A327

proposal is generated on the kth iteration of the MCMC algorithm by sam-328

pling a move from M(x(k−1)). This avoids the need to compute the entire329

Markov basis a priori. The method Dobra (2012) described for constructing330

M(x) applies generally to all models with constraints of the form n = Ax331

and, possibly, further bounds on the counts in individual cells. In short, local332

moves are generated by permuting the counts in a random selection of “free”333

cells – entries of x whose values are not fixed by the information in n and334

the cell bounds. The method we describe is specific to the mark-recapture335

framework but produces a dynamic Markov basis containing intuitive moves336



EXTENDING THE LATENT MULTINOMIAL 11

that are easily sampled. Further comparison with Dobra (2012) is provided337

in Section 8.338

The dynamic Markov basis we propose allows the chain to move through339

Fn using operations that either add or remove errors from the current con-340

figuration. Each of these operations modifies four entries in the vector of341

counts for the latent error histories, increasing two counts and decreasing342

two counts. Errors are added by decreasing the counts for a pair of histories343

with a 0 and 1 on some occasion, t, and increasing the counts of the corre-344

sponding histories formed by changing the 0 in the first history to a 2 and345

the 1 in the second history to a 3. Errors are removed using the opposite346

operation.347

To make this explicit, define348

Xvt(x) = {ν : νs = 1 for some s < t, νt = v, and xν > 0}

to be the set of latent error histories with an initial capture before occasion349

t, event v on occasion t, and positive entry in x. Moves in M(x) modify the350

counts for one history drawn from each of the sets X0t(x), X1t(x), X2t(x),351

and X3t(x), for some common t and are divided into two classes: M1(x)352

containing the moves that add errors and M2(x) containing the moves that353

remove errors. A key advantage of this approach is that moves in M1(x)354

and M2(x) can be sampled without ever having to construct the entire355

sets. Moves in M1(x) are denoted by b+(ν0,ν1,ν2,ν3) and are generated356

by sequentially sampling357

1. ν1 ∈ χ1·(x) =
⋃T

t=2X1t(x)358

2. s ∈ {t : ν1t = 1}359

3. ν0 ∈ X0s(x),360

all uniformly, and setting361

ν2t =

{

2 if t = s
ν0t otherwise

and ν3t =

{

3 if t = s
ν1t otherwise

.

More compactly, ν2 = ν0 + 2δt and ν3 = ν1 + 2δt where δt represents the362

J-vector with a single 1 in entry t. Indexing by name, as described in Section363

5.1, the corresponding move has entries364

(3) b+
ν
(ν0,ν1,ν2,ν3) =







−1 if ν = ν0 or ν = ν1
1 if ν = ν2 or ν = ν3
0 otherwise

.

Similarly, moves in M2(x) are denoted by b−
ν
(ν0,ν1,ν2,ν3) and are gener-365

ated by sequentially sampling:366
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1. ν2 ∈ χ2·(x) =
⋃T

t=1X2t(x)367

2. s ∈ {t : ν2t = 2}368

3. ν3 ∈ X3s(x)369

and setting ν0 = ν2 − 2δt and ν1 = ν3 − 2δt. The corresponding move has370

entries371

(4) b−
ν
(ν0,ν1,ν2,ν3) =







1 if ν = ν0 or ν = ν1
−1 if ν = ν2 or ν = ν3
0 otherwise

.

On the kth iteration of our MCMC algorithm a proposal, xprop, is gener-372

ated by choosing whether to add or remove an error from the current con-373

figuration, x(k−1) with equal probability and sampling a move as described374

above. The proposal density when adding an error is375

(5) q(xprop|x(k−1)) =
.5

#χ1·(x(k−1)) ·#{t : ν1t = 1} ·#χ0s(x(k−1))

and when removing an error is376

(6) q(xprop|x(k−1)) =
.5

#χ2·(x(k−1)) ·#{t : ν2t = 2} ·#χ3s(x(k−1))

where #S denotes the cardinality of S. If we propose to add an error and377

x(k−1) contains no errors, χ3.(x
(k−1)) = ∅, or if we propose to remove an378

error and x contains no correct identifications, χ3.(x
(k−1)) = ∅, then we set379

x(k) = x(k−1) and continue to the next iteration. Full details are provided in380

Algorithm 2. Proof that the resulting chains converge to the joint posterior381

distribution of x, φ, and p is provided Supplement A.382

6. Results. In our analysis of the queen snake data we fit an initial383

CJS model to the original PIT tag data (Model 1). We then simulated data384

mimicking what might be observed from the branding data by generating385

new data from the estimated demographic parameters and adding errors386

following the BRE model using the observed identification rates, α = 8/9387

and α = 6/9. We refit the CJS model to each data set to assess the effects388

of errors that are not modelled (Model 2), and then fit the CJS/BRE model389

to the each data set using the methods described in Section 5 (Model 3).390

One hundred simulated data sets were generated for each value of α.391

Analysis of the PIT tag data using maximum likelihood methods in Pro-392

gram MARK (White and Burnham, 1999) strongly supported a simplified393

CJS model which allowed the capture probabilities to vary independently394
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Initialise φ(0) and p(0).
Initialise x(0) so that n = Ax(0) and set z(0) = Bx(0).
Set k = 1.

1. Update φ and p conditional on z(k−1). Call the results φ(k) and p(k).

2. Update x and z conditional on φ(k) and p(k) as follows.

i) With probability .5 sample b from M1(x
(k−1)). If M1(x

(k−1)) = ∅ then set
x(k) = x(k−1) and continue to step v).
Otherwise sample b from M2(x

(k−1)). If M2(x
(k−1)) = ∅ then set

x(k) = x(k−1) and continue to step v).

ii) Set xprop = x(k−1) + b.

iii) Calculate the Metropolis acceptance probability:

r(x,xprop|φ(k),p(k), α) = min

{

1,
π(xprop|n,φ(k),p(k), α)

π(x(k−1)|n,φ(k),p(k), α)
·
q(x(k−1)|xprop)

q(xprop|x(k−1))

}

.

iv) Set x(k) = xprop with probability r(x,xprop|φ(k),p(k), α) and x(k) = x(k−1)

otherwise.

v) Set z(k) = Bx(k)

3. Increment k.

Algorithm 2: Proposed algorithm for sampling from the posterior distri-
bution of the CJS/BRE model using the dynamic Markov basis.

across all occasions but constrained survival to be equal on the final 8 occa-395

sions. The estimated survival probabilities were φ̂1 = 0.66, φ̂2 = 1.00, and396

φ̂3 = . . . = φ̂9 = 0.93. Clearly the overwintering survival rate, φ1, has the397

largest effect on the population and is of most interest.398

Figure 1 compares the bias of the posterior means and the width and399

coverage of the central 95% credible intervals (CIs) for the three models.400

Fitting the standard CJS model to the data without errors (Model 1) pro-401

vides an estimate of φ1 that is almost unbiased and 95% CIs with coverage402

above the nominal value. Fitting the same CJS model to the data with er-403

rors (Model 2) produced very poor results. When α = 8/9 the estimated404

bias of φ̂1 was 0.15 (23%) and the coverage of φ1 was only 47%. The bias405

increased one and a half times to 0.24 (36%) and the coverage dropped to406

only 6% when α decreased to 6/9. In comparison, the posterior mean of φ1407

from the CJS/BRE model (Model 3) was negligibly biased for both levels408

of error and coverage of the 95% CI again exceeded the nominal rate. As409

expected, credible intervals from Model 3 were wider than those from Model410

1 to account for the extra uncertainty introduced by the errors. All models411

produced estimates of φ2 that were biased because the true parameter lies412
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Fig 1. Results of the analysis of the queen snake data. The three panels present the estimate
bias of the posterior means (Panel A) and the estimated width (Panel B) and coverage
probability (Panel C) of the 95% credible interval for the survival probabilities for the
three models described in Section 6. The different models are indicated by the shape of the
plotting symbol. The rates of error are for Models 2 and 3 indicated by the colour of the
symbol. Coverage of φ2 is not reported because the true parameter lies on the boundary of
the parameter space.

on the boundary of the parameter space. Coverage of this parameter was413

zero for all models and is not reported. The posterior mean of φ2 from Model414

3 was significantly more biased than that of Model 1, underestimating φ2415

by 9% when α = 8/9 and 16% when α = 6/9. This is due to there being416

more significant shrinkage toward the prior mean of 0.50 when there is more417

uncertainty in the data.418

7. Computational Efficiency. Not only does the dynamic Markov419

basis allow us to fit the CJS/BRE model when T is large, but it also leads420

to more efficient sampling when the full Markov basis can be computed.421

To illustrate this, we present results from analysing a single simulated data422

set with T = 4 capture occasions (the largest number for which we can423

compute the Markov basis using 4ti2). Data was generated for a sample424

of 30 individuals with constant survival probability φ1 = φ2 = φ3 = .8,425

constant capture probability p2 = p3 = p4 = .5, and error rate α = .5.426
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Fig 2. Comparison of the chains sampling from the posterior distribution of the CJS/BRE
model applied to the simulated data. The figures trace the number of errors in x for the
algorithms using the fixed basis (left) and dynamic basis (right). The grey dotted lines
represent the true number of errors in the data set.

Samples from the joint posterior distribution of x and z were then drawn427

using Step 1 Algorithm 1 and Step 2 of of Algorithm 2 while keeping φ and428

p fixed at their true values.429

We assessed how well the chains mixed by comparing the acceptance430

rates and the number of unique solutions for x identified. The chain con-431

structed using Algorithm 1 identified a total of 79 unique configurations432

among the 7,500 values of x sampled after the burn-in phase. Less than 1%433

of the proposed configurations were accepted. In comparison, the chain con-434

structed with Algorithm 2 identified 2548 unique configurations and 38% of435

the proposed configurations were accepted. Figure 2 provides traceplots of436

the chains using the number of errors in the configurations sampled on each437

accept/reject step as a metric. These summaries all make it clear that the438

chain constructed from Algorithm 2 is mixing and moving through the fibre439

much more quickly than the chain constructed from Algorithm 1.440

8. Discussion. The results in Section 6 clearly illustrate the problems441

with misidentification. The overwintering survival probability was overesti-442

mated by 23% or 36% depending on the error rate and coverage of the 95%443
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CIs was always less than 50%. In comparison, estimates from the CJS/BRE444

model were almost unbiased and the credible intervals had above nomi-445

nal coverage. The extra uncertainty in the error does increase the posterior446

variances and the obvious recommendation is to reduce error rates experi-447

mentally by using marks that are clearer or tagging individuals twice. Un-448

certainty could also be reduced by pairing observers or simply by increasing449

the number of hours spent in the field to raise capture rates. Of course, these450

measures would increase expense, and we are currently assessing the costs451

and benefits of these options.452

Although we have focused on the CJS/BRE model, we believe that the453

methods presented in Section 5 should be applicable to broad range of mark-454

recapture models with possible errors. As a second example, we describe the455

application of these methods to model Mtα in Supplement B. However, the456

framework described in Section 5.1 can incorporate more complex mod-457

els of both the capture and error processes than the original LMM and is458

particularly useful when the distribution of the joint histories described by459

the combining processes is intractable. The algorithm based on dynamic460

Markov bases presented in Section 5.2 essentially entails moving through461

Fn by adding or removing errors one at a time, and we expect that the462

same procedure can be applied to an even broader set of models, with two463

important caveats. First, it must be possible to write the model in terms of464

the two linear constraints described in the extended framework. This will465

not always be the case and does not happen if we extend the BRE model so466

that individual i can be captured on occasion t and another individual can467

be captured and identified as individual i at the same time. We are working468

to extend these models to allow for such events. The second caveat is that469

the Markov chains derived from the new algorithm may not be irreducible if470

the posterior distribution assigns probability zero to some elements in Fn.471

This might occur if certain configurations of the errors can be ruled out a472

priori, and would require the Markov basis to be expanded further.473

An important issue that remains is how the connectivity of Fn and the474

efficiency of the chains are affected by different dynamic Markov bases. In475

the methods of Dobra (2012), moves are generated on each iteration of the476

MCMC algorithm by sampling M ∈ {1, 2, . . . , J} according to some density477

g(·), randomly sampling a permutation function δ(·) from the set of all478

permutations of the indices of x, and sequentially resampling the counts in479

the first M cells in δ(x) to maintain the linear constraint. The moves in our480

dynamic Markov basis comprise a subset of these moves for which 1) M = 4,481

2) the set of permutations is restricted so that the first four cells belong to482

ξ0t(x), ξ1t(x), ξ2t(x), and ξ3t(x) respectively for some t, and 3) the counts in483
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these cells are modified by adding or subtracting the vector (−1,−1, 1, 1)′.484

Both bases connect the fibre and produce irreducible Markov chains. The485

basis of Dobra (2012) contains many more moves and has the advantage486

that the chains will sometimes make larger jumps in Fn. However, this will487

probably reduce the acceptance rate. Exploring the balance between these488

extremes to produce efficient samples is a topic requiring further research.489

APPENDIX A: CORMACK-JOLLY-SEBER MODEL

The basic assumptions of the CJS model are that (see e.g. Seber (2002,490

pg. 196)):491

1. Each individual alive on occasion t survives to occasion t + 1 with492

probability φt.493

2. Each individual alive on occasion t is captured with probability pt.494

3. All individuals are correctly identified when captured (i.e., marks are495

not lost or misread).496

4. All events are independent.497

Given these assumptions, probabilities are assigned to the capture histories498

conditional on the first release of each individual. For example, the proba-499

bility assigned to the history ω = 01010 is500

f(ω|φ,p) = φ2(1− p3)φ3p4(φ4(1− p5) + (1− φ4).

The final term accounts for the possibility that the individual was not ob-501

served on occasion 5 either because it did not survive or survived and was502

not captured. The likelihood can then be written as a product multinomial503

so that:504

f(n|φ,p) ∝
I
∏

i=1

f(ωi|φ,p)
ni .

APPENDIX B: NOTATION

Algebraic Statistics and Markov Bases:

Fn n-fibre, Fn = {x ∈ N
J : n = Ax}.

B Lattice basis for ker(A).
M Markov basis for ker(A).
M(x) Dynamic Markov basis for ker(A) computed at x.

Extended LMM:
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nTot Number of distinct individuals captured and marked.
ωi Observed capture history for the ith marked individual.
νi Latent error history for the ith marked individual.
ξi Latent capture history for the ith marked individual.
n Observed vector of counts for the observable histories (indexed

by either i and ω).
x Unknown vector of counts for the latent error histories (indexed

by either j and ν).
z Unknown vector of counts for the latent capture histories (in-

dexed by either k and ξ).
I Length of n. For the CJS/BRE model I = 2T − 2.
J Length of x. For the CJS/BRE model J = (4T − 1)/3− 1.
K Length of z. For the CJS/BRE model K = 2T − 2.
A I × J matrix mapping x onto n, n = Ax.
B K × J matrix mapping x onto z, z = Bx.
θ1 Parameters in the model of z.
θ2 Parameters in the conditional model of x given z.

Band-Read Error Model:
pt Capture probability: the probability that an individual alive on

occasion t is captured, t = 2, . . . , T .
φt Survival probability: the probability that an individual is alive on

occasion t+1 given that it was alive on occasion t, t = 1, . . . , T−1.
α Correct identification rate: the probability that a captured indi-

vidual is identified correctly.
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SUPPLEMENTARY MATERIAL

Supplement A: Proof of Convergence507

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). Proof508

that the chains generated by Algorithm 2 converge to the correct distribu-509

tion.510

Supplement B: Model Mtα511

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). Ap-512

http://www.e-publications.org/ims/support/dowload/imsart-ims.zip
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plication of the extended framework with dynamic Markov bases to model513

Mtα.514
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and Technology Austria‡8

Supplement A: Proof of Convergence. To prove that chains gener-9

ated from Algorithm 2 from the manuscript converge to the correct distri-10

bution, we need to satisfy three conditions: 1) that Step 1 produces chains11

which converge to π(φ,p|z) for any z such that z = Bx for some x ∈ Fn, 2)12

that Step 2 produces chains which converge to π(x|n,φ,p, α) for any φ and13

p in the parameter space, and 3) that the joint posterior distribution satis-14

fies the positivity condition of (Robert and Casella, 2010, pg. 345). Sampling15

from π(φ,p|z) is equivalent to sampling from the posterior distribution for16

a simple CJS model. This is now standard (Link et al., 2002, see e.g.), and17

so we assume that Condition 1 is satisfied. It is also simple to show that the18

positivity constraint is satisfied given that the prior distributions for φ and19

p are positive over all of (0, 1)T × (0, 1)T−1, as assumed in Section 5 of the20

original manuscript. It remains to show that Condition 2 holds.21

We assume here that Fn contains at least two elements. The fibre always22

contains at least one element with no errors which we denote by x∅. The23

entries of this element are24

x∅ν =

{

nν if ν is observable
0 otherwise

.

Cases in which Fn = {x∅} arise when no errors could have occurred, for25

example, if no individuals were ever recaptured. These situations are easily26

identified and there is no need to sample from the joint posterior of both x27

and θ in such cases since x = x∅ with probability one.28

Some useful results that are easy to prove are:29

1. that any configuration of the latent error histories within the fibre has30

positive probability under the conditional posterior for all values of31

the parameters in the parameter space,32

1
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Lemma 1. If x ∈ Fn then π(x|n,φ,p, α) > 0 for all values of φ and33

p in the parameter space.34

2. that the local sets within the dynamic Markov basis are symmetric,35

Lemma 2. Let x ∈ Fn. If b
+ ∈ M1(x) then −b+ ∈ M2(x+b+) and36

if b− ∈ M2(x) then −b− ∈ M1(x+ b−).37

3. that all proposals remain inside Fn,38

Lemma 3. Let x ∈ Fn. If b ∈ M(x) = M1(x)
⋃

M2(x) then x+b ∈39

Fn.40

4. that there is a unique element x∅ in Fn with no errors.41

Lemma 4. Suppose that x∅ ∈ Fn. Then et(x
∅) = 0 ∀t = 2, . . . , T if42

and only if43

x∅ν =

{

nν if ν is observable

0 otherwise
.

First we establish irreducibility. Proposition 1 implies that there is a path44

connecting any two elements in the fibre while Proposition 2 implies that45

each step, and hence the entire path, has positive probability under the46

transition kernel. Together, these show that that the chains are irreducible.47

Proposition 1. For any distinct x1,x2 ∈ Fn there exists a sequence of48

moves b1, . . . , bL such that:49

1. bL′ ∈ M
(

x1 +
∑L′−1

l=1 bl

)

for all L′ = 1, . . . , L50

2. x1 +
∑L′

l=1 bl ∈ Fn for all L′ = 1, . . . , L− 1, and51

3. x2 = x1 +
∑L

l=1 bl,52

where we take x1 +
∑0

l=1 bl = x1.53

Proof. Our proof follows by (reverse) induction on the number of errors.54

Suppose that et(x1) > 0 for some t. Then X2t(x1) and X3t(x1) are both non-55

empty and ∃b−11 ∈ M2(x1). Then et(x1+b−11) = et(x1)−1 and x1+b−11 ∈ Fn56

by Lemma 3. Repeating this procedure L1 =
∑T

t=2 et(x1) times, we find57

b−11, . . . , b
−
1L1

such that58

1. b−1L′ ∈ M2(x1 +
∑L′−1

l=1 b−1l) for L
′ = 1, . . . , L1,59

2. x1 +
∑L′

l=1 b
−
1l ∈ Fn for all L′ = 1, . . . , L1, and60

imsart-aoas ver. 2014/10/16 file: bre_manuscript_1_aoas_supplementary.tex date: September 16, 2015



SUPPLEMENT TO “EXTENDING THE LATENT MULTINOMIAL” 3

3. et(x1 +
∑L1

l=1 b
−
1l) = 0.61

It follows from Lemma 4 that x1 +
∑L1

l=1 b
−
1l = x∅. By the same argument,62

∃b−21, . . . , b
−
2L2

such that63

1. b−2l ∈ M2(x2 +
∑L′−1

l=1 b−2l) for L
′ = 1, . . . , L2,,64

2. x2 +
∑L′

l=1 b
−
2l ∈ Fn for all L′ = 1, . . . , L2, and65

3. x2 +
∑L2

l=1 b
−
2l = x∅.66

Moreover, −b−2,L2−l+1 ∈ M1(x
∅ +

∑L′−1
l=0 −b−2,L2−l) for all L′ = 1, . . . , L267

by Lemma 2. Then the sequence b1, . . . , bL where L = L1 + L2, bl = b−1l68

for l = 1, . . . , L1, and bL1+l = −b−2,L2−l+1 for l = 1, . . . , L2 satisfies the69

conditions of the proposition. Note that half of this argument suffices if70

either x1 = x∅ or x2 = x∅.71

Proposition 2. Let x ∈ Fn. If b ∈ M(x) then P (x(k+1) = x+b|x(k) =72

x) > 0.73

Proof. Suppose that b ∈ M1(x) and let x′ = x+b. Then −b ∈ M2(x
′)74

by Lemma 2. Direct calculation of equations (5) and (6) shows that both75

q(x′|x) > 0 and q(x|x′) > 0. Combined with Lemma 1 it follows that76

r(x,x′|φ(k),p(k), α) (defined in Step 2, Substep iii of Algorithm 2) is positive77

and hence that P (x(k+1) = x′|x(k) = x) = q(x′|x) ·r(x,x′|φ(k),p(k), α) > 0.78

A similar argument shows that P (x(k+1) = x + b|x(k) = x) > 0 for all79

b ∈ M2(x).80

We establish aperiodicity by showing that there is positive probability of81

holding at x∅.82

Proposition 3. If x(k) = x∅ then P (x(k+1) = x0|x
(k) = x0) ≥ .5.83

Proof. The setM2(x
∅) is empty since there are no errors to remove from84

x∅. However, Algorithm 2 still proposes to draw a move from M2(x
∅) with85

probability .5. When this occurs we set x(k+1) = x(k) so that P (x(k+1) =86

x∅|x(k) = x∅) ≥ .5.87

This shows that x∅ is an aperiodic state and hence that the entire chain is88

aperiodic (Cinlar, 1975, pg. 125)89

Since the fibre is finite, irreducibility and aperiodicty are sufficient to en-90

sure that the chains have a unique stationary distribution which is also the91

limiting distribution (see Cinlar, 1975, Corollary 2.11). That this distribu-92

tion is equal to the target distribution is guaranteed by the detailed balance93
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condition of the MH algorithm which holds under Proposition 4 (Liu, 2004,94

pg. 111).95

Proposition 4. If q(x′|x) > 0 then q(x|x′) > 0 for all x,x′ ∈ Fn.96

Proof. Suppose that q(x′|x) > 0. Then either x′ − x ∈ M1(x) or x
′ −97

x ∈ M2(x). If x
′ − x ∈ M1(x) then x − x′ ∈ M2(x

′) by Lemma 2 and98

q(x|x′) > 0. Similarly, if x′ − x ∈ M2(x) then x − x′ ∈ M1(x
′) and99

q(x|x′) > 0.100

This completes our proof that the Markov chains produced by Algorithm101

2 have unique limiting distribution π(x,φ,p|n, α) so that realisations from102

the tail of a converged chain can be used to approximate properties of the103

joint posterior distribution of x, φ, and p.104

Supplement B: Model Mtα. Here we show how the model described105

by Link et al. (2010) can be fit into the extended model using a dynamic106

Markov basis to sample from the posterior distribution. Model Mtα extends107

the standard closed population model with time dependent capture prob-108

abilities by allowing for individuals to be misidentified. Specifically, Mtα109

assumes that individuals are identified correctly with probability α on each110

capture and that errors do not duplicate observed marks in that one marked111

individual cannot be identified as another marked individual and that the112

same error can never occur twice. This means that each error creates a new113

recorded history with a single non-zero entry. For example, suppose that114

T = 3 and that individual i is captured on the first occasion, recaptured115

and misidentified on the second occasion, and not captured on the third oc-116

casion. The true capture history for this individual, including errors, is 120,117

where the event 2 denotes that the individual was captured and misidenti-118

fied. The individual would then contribute two recorded histories, 100 and119

010, to the observed data set.120

Extended Formulation. As with the CJS/BRE model, we cast model121

Mtα into the new framework by 1) identifying the sets of observable capture122

histories, latent error histories, and latent capture histories, 2) constructing123

the linear constraints matrices for the corresponding count vectors, and 3)124

identifying the components of the likelihood function. For an experiment125

with T occasions, the set of observable capture histories contains all 2T−1
126

histories in {0, 1}T excluding the unobservable zero history, the set of latent127

error histories includes all 3T histories in {0, 1, 2}T , and the set of latent128

capture histories includes all 2T histories in {0, 1}T . The matrix A is defined129

imsart-aoas ver. 2014/10/16 file: bre_manuscript_1_aoas_supplementary.tex date: September 16, 2015



SUPPLEMENT TO “EXTENDING THE LATENT MULTINOMIAL” 5

exactly as in Link et al. (2010): Aij = 1 if the ith observable history is130

observed from the jth latent error history and Aij = 0 otherwise. Similarly,131

Bkj = 1 if the kth latent capture history has the same pattern of captures as132

the jth latent error history. Mathematically, let ωi, νj , and ξk represent the133

ith, jth, and kth observable history, latent error history, and latent capture134

history for some implicit orderings. Then135

Aij =















1 if ωit = I(νjt = 1) for all t = 1, . . . , T
or if ωi = δt and νjt = 2 for some t ∈ {1, . . . , T}

0 otherwise

and136

Bkj =







1 ξkt = I(νjt = 1) + I(νjt = 2) for all t = 1, . . . , T

0 otherwise
.

Here δt represents t
th column of the T × T identity matrix (i.e., the vector137

with a single 1 in the tth entry). Finally, the two components of the likelihood138

function are139

π(z|p) =
N !

∏

ξ∈Z zξ!

∏

ξ∈Z

[

K
∏

k=1

p
I(ξk=1)
k (1− pk)

I(ξk=0)

]zξ

and140

π(x|z, α) =

∏

ξ∈Z zξ!
∏

ν∈X xν !

∏

ν∈X

[

K
∏

k=1

αI(νk=1)(1− α)I(νk=2)

]xν

Here N =
∑

ξ∈Z zTξ represents the true population size. Note that the prod-141

uct of these two contributions exactly reconstructs the single likelihood func-142

tion for Mtα defined by Link et al. (2010, eqns 6 and 7).143

Dynamic Moves. We can again generate a dynamic Markov basis by144

selecting from a set of moves which add or remove errors from the current145

configuration. An extra step is also needed on each iteration of the algorithm146

to update the count of the unobserved individuals, ν0.147

Let χνt(x) = {ν : νt = ν and xν > 0} be the set of latent error histories148

with event ν on occasion t and positive counts in x. As with the CJS/BRE149

model, we define M(x) as the union of two sets: M1(x) containing moves150
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which add errors and M2(x) containing moves which remove errors. Each151

move in the dynamic Markov basis modifies the counts of three latent error152

histories. Moves in M1(x) are defined by sampling one history ν0 ∈ χ0t(x)153

for some t and are denoted by b(ν0). The other two latent error histories,154

ν1 and ν2, are defined by setting ν1 = δt and ν2 = ν0+2δt. The move b(ν0)155

is then defined by setting156

bν(ν0) =

{

−1 if ν = ν0 or ν = ν1
1 if ν = ν2

.

Similarly, moves in M2(x), denoted by b(ν2), are defined by sampling a157

history ν2 ∈ χ2t(x) for some t, setting158

ν1 = δt

and159

ν0s =

{

0 s = t

ν2s otherwise
t = 1, . . . , T.

The move b(ν2) is then defined by setting160

bν(ν2) =

{

−1 if ν = ν2
1 if ν = ν0 or ν = ν1

.

If we assume that the decision to add or remove an error are each chosen with161

probability .5 and that histories are sampled uniformly from χ0· =
⋃T

t=1 χ0t162

and χ2· =
⋃T

t=1 χ2t, when adding or removing an error respectively, then the163

proposal densities for the moves x′ = x(k−1)+b(ν0) and x′ = x(k−1)+b(ν2)164

are given by165

q(x′|x(k−1)) =
.5

#χ0·(x(k−1)) ·#{t : ν0t = 1}

and166

q(x′|x(k−1)) =
.5

#χ2·(x(k−1)) ·#{t : ν2t = 2}
.

As in the algorithm for the CJS/BRE, we retain x(k−1) with probability 1167

if an empty set is encountered in one of these processes or if the selected168

move reduces any of the counts in x below zero. Details of the full algo-169

rithm for sampling from the posterior distribution of model Mtα are given170

in Algorithm 3.171
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Initialise p(0) and α.
Initialise x(0) so that n = Ax(0) and set z(0) = Bx(0).

Set k = 1.

1. Update p and α conditional on x(k−1) and z(k−1). Call the results p(k) and α(k).

2. Update x and z conditional on and p(k) and α(k) as follows.

i) With probability .5 sample b from M1(x
(k−1)). If M1(x

(k−1)) = ∅ then set
x(k) = x(k−1) and continue to step v).
Otherwise sample b from M2(x

(k−1)). If M2(x
(k−1)) = ∅ then set

x(k) = x(k−1) and continue to step v).

ii) Set xprop = x(k−1) + b. If x′

j < 0 for any j = 1, . . . , J set x(k) = x(k−1) and
continue to step v).

iii) Calculate the Metropolis acceptance probability:

r(x,xprop|p(k)
, α) = min

{

1,
π(xprop|n,p(k), α)

π(x(k−1)|n,p(k), α)
·
q(x(k−1)|xprop)

q(xprop|x(k−1))

}

.

iv) Set x(k) = xprop with probability r(x,xprop|φ(k),p(k), α) and x(k) = x(k−1)

otherwise.

v) Set z(k) = Bx(k)

3. Increment k.

Algorithm 3: Proposed algorithm for sampling from the posterior distri-
bution of Model Mtα using the dynamic Markov basis.
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