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Summary: Petersen-type mark-recapture experiments are often used to estimate the number of fish

or other animals in a population moving along a set migration route. A first sample of individuals is

captured at one location, marked, and returned to the population. A second sample is then captured

farther along the route, and inferences are derived from the numbers of marked and unmarked fish

found in this second sample. Data from such experiments are often stratified by time (day or week)

to allow for possible changes in the capture probabilities, and previous methods of analysis fail to

take advantage of the temporal relationships in the stratified data. We present a Bayesian, semi-

parametric method that explicitly models the expected number of fish in each stratum as a smooth

function of time. Results from the analysis of historic data from the migration of young Atlantic

salmon (Salmo salar) along the Conne River, Newfoundland, and from a simulation study indicate

that the new method provides more precise estimates of the population size and more accurate

estimates of uncertainty than the currently available methods.
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1. Introduction1

Single-recapture, Petersen-type mark-recapture experiments are commonly used to monitor2

populations of Atlantic and Pacific salmon (Salmo salar and Onchorhyncus sp.) as they3

migrate between their freshwater spawning grounds and the oceans where they spend their4

adult lives. In these experiments, samples of fish are captured at one location, marked, and5

returned to the population, and new samples containing both marked and unmarked fish are6

captured from a second location farther along the migration route. Estimates of abundance7

are then derived by modelling the numbers of marked and unmarked fish captured at the8

second location. If all fish have the same probability of being captured at the second location9

then the simple Petersen estimator computed from the overall numbers of marked and10

unmarked fish captured at the second location provides a valid estimate of population size.11

However, salmon migrations can last for weeks or months and the probability of capture can12

change considerably over this time. As a result, simple Petersen estimates of the population13

size, and the degree of uncertainty in these estimates, may be severely biased (see Seber,14

2002, pg. 85).15

One way to allow for such variations in catchability is to stratify the population by16

time – essentially, to divide the experiment into shorter time strata (days or weeks) and17

then to estimate the number of individuals passing the second location separately for each18

stratum. Darroch (1961) provided the first rigorous treatment of the stratified-Petersen model19

and derived maximum likelihood estimators by conditioning on the numbers of individuals20

marked and released in each stratum at the first location. Similar methods were developed by21

Macdonald and Smith (1980) for the modified experiment in which trapping occurs at only22

one location and marked fish are introduced by transporting them upstream to be released.23

Plante et al. (1998) developed unconditional likelihood methods by modelling the number24

of individuals at the first location, and further allowed the capture probabilities to depend25
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on stratum specific covariates like rate of flow. Estimators of abundance from the stratified-26

Petersen model have also been obtained by the methods of moments (Chapman and Junge,27

1956) and by least squares (Banneheka et al., 1997).28

Although stratification reduces the bias of the abundance estimates, it also increases the29

number of parameters which leads to a bias/variance trade-off. In general, marked individuals30

may pass the second location in any stratum so that it is necessary to model the movements31

of these fish between the trapping locations. The number of parameters increases as the32

product of the number of strata at the two locations, and if few marked fish are recaptured33

then the movements are difficult to model and the resulting estimates of population size will34

be imprecise.35

The number of parameters can be reduced by partially pooling the data, but there are36

several pitfalls. Proposed methods for pooling strata essentially entail testing for differences37

in the capture probabilities between neighbouring strata and then combining these strata if38

the null hypothesis is not rejected (see Darroch, 1961; Schwarz and Taylor, 1998; Bjorkstedt,39

2000). However, such tests will have low power, because the number of fish marked in each40

strata is small, and important differences are likely to be overlooked. Guidelines as to how far41

the data should be pooled are not available, and, moreover, standard errors and confidence42

intervals computed from these methods do not account for the pooling decisions and will43

underestimate the true variability in the estimated population size (Steinhorst et al., 2004).44

Schwarz and Dempson (1994) introduced another method to reduce the number of pa-45

rameters by assigning parametric distributions to the travel times of the marked individuals.46

Their particular formulation assumes that travel times between the trapping locations follow47

independent log-normal distributions with mean and variance parameters that depend only48

on the release strata. Probabilities governing the movement of the marked fish can then be49

computed from standard normal calculations, and the number of parameters in the model can50
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be greatly reduced relative to the model of Darroch (1961) which allows complete flexibility in51

the movements between strata. Mantyniemi and Romakkaniemi (2002) extended this model52

to the hierarchical Bayesian framework by modelling the capture probabilities, the means and53

variances of the travel times, and the numbers of unmarked fish in each stratum as random54

draws from hyper-priors with unknown parameters. This allows for sharing of information55

between the strata through estimation of the hyper-parameters and further decreases the56

uncertainty in total abundance.57

One shortcoming of all of these methods is that they fail to account for the natural,58

temporal ordering of the data. Most salmon runs follow a fairly predictable pattern with59

small numbers of fish passing the traps early in the migration followed by a steady increase60

to one or two peaks near the middle of the migration and then a slow decrease toward61

the end. Accounting for these patterns has the potential to improve estimates of the total62

population size, and our primary contribution is the implementation of a Bayesian, semi-63

parametric method that takes advantage of the temporal ordering by explicitly modelling64

the expected number of unmarked fish in each stratum as a smooth function of time. Further65

to this, we develop a hierarchical, non-parametric model for the movements of the marked66

fish that reduces the number of parameters by building on similarities in the movements67

between strata rather than by assuming a specific parametric form. In the following sections68

we develop the general model, describe methods for assessing goodness-of-fit and comparing69

candidate models, and provide results from an application to historical data and a simulation70

study that illustrate the primary advantages of our method.71

2. Methods72

We describe the implementation of the Bayesian P-spline model with specific application73

to programs monitoring the productivity of salmon populations, though the methods are74

generally applicable to temporally stratified data. Most species of salmon are anadromous,75
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meaning that they are born in freshwater lakes and rivers but spend the majority of their76

adult lives in the ocean before returning to freshwater to spawn. Every year, the young fish77

born one or two years earlier (called smolts) leave the spawning grounds, and the productivity78

of the population can be quantified by the total number of out-migrating smolts. To estimate79

the size of the migration (also called the run), fish are trapped at one location, marked,80

and released back into the population. Samples containing both marked and unmarked81

individuals are then trapped at a second location farther along the migration route, and82

the size of the population is estimated by modelling the capture of marked and unmarked83

individuals at the second trap. As discussed in Section 1, these runs may last for weeks or84

months and the data are often stratified to account for changes in the capture probabilities85

over this time. We assume that the data are stratified by day for notational convenience, but86

the methods apply equally if the data are grouped in other ways.87

Data obtained from these experiments consist of the daily numbers of marked fish released88

at the first trap, and the daily numbers of both marked and unmarked fish captured at89

the second trap. The two traps need not be operated for the same length of time, and it is90

common to continue trapping at the second location for several days after the last marked91

fish are released to allow time for these individuals to move past the second trap. We denote92

the number of days of capture at the first and second traps by s and t, the number of marked93

fish released on day i at the first trap by ni, the number of these fish recaptured on day j94

by mi,j, and the number of unmarked fish captured at the second trap on day j by uj. The95

total number of unmarked fish that pass the second trap on day j is denoted by Uj, the sum96

over all days by UTot, and the total population size by NTot =
∑s

i=1 ni + UTot. Vectors and97

matrices are used to simplify the notation where possible such that n represents the vector98

(n1, . . . , ns)
′, u the vector (u1, . . . , ut)

′, and M the matrix with ij entry mi,j.99

Common assumptions for modelling such data essentially imply that the samples of marked100
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and unmarked fish captured at the second trap constitute simple, random samples from the101

populations available on each day. Specifically, it is assumed that:102

(1) all fish passing the second trap on day j have the same probability of capture, pj, and103

(2) whether or not any one fish is captured at the second trap is independent of whether or104

not any other fish is captured.105

Further to this, it is necessary to model the movement of the marked fish between the two106

traps. Standard assumptions concerning the movements of marked fish are that:107

(1) they do not emigrate or die between the two traps,108

(2) marks are not lost or overlooked when fish are recaptured,109

(3) all marked fish released at the first trap on day i have the same probability of passing110

the second trap on day j, θi,j, and111

(4) the movements of marked fish are independent of one and other.112

Given these assumptions, the recaptures of fish marked on day i will follow the multinomial113

distribution:114

mi ∼ MN

{
ni,

(
θi,1p1, . . . , θi,tpt, 1−

t∑
j=i

θi,jpj

)}
(1)

where mi = (mi,1, . . . ,mi,t, ni − mi,·) and mi,· =
∑t

j=imi,j. Conditioning on U , as in the115

original formulation of Darroch (1961), the number of unmarked fish captured at the second116

trap on day j will be distributed according to the binomial model:117

uj ∼ Binomial(Uj, pj). (2)

The likelihood function is computed by multiplying the contributions from (1) and (2) over118

all days and is proportional to:119

L(U ,p,Θ|n,M ,u) =
s∏
i=1

{
t∏

j=1

(θi,jpj)
mi,j · (1−

t∑
j=1

θi,jpj)
ni−mi,·

}
·
t∏

j=1

(
Uj
uj

)
p
uj
j (1−pj)Uj−uj .

(3)
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A complete Bayesian formulation is then obtained by specifying prior distributions for the120

parameters U , p, and Θ.121

In their formulation, Mantyniemi and Romakkaniemi (2002) (hereafter MR02) define the122

prior forU by first assigning UTot a vague prior distribution and then modellingU conditional123

on UTot. Specifically, they define the improper Jeffrey’s prior π(UTot) ∝ 1/UTot and model124

the individual elements of U by the multinomial:125

U |UTot,ρ ∼ MN(UTot, (ρ1, . . . , ρt)).

The cell probabilities, ρ, are then assigned a Dirichlet prior with fixed parameter α.126

In theory, individual elements of α could be chosen to encode prior information about127

the elements of U , but this would require the user to provide explicit details regarding the128

exact shape of the run. The simplest prior, with αj = α for all j = 1, . . . , t, implies that the129

marginal prior distribution of Uj is the same for all j and ignores the ordering of the strata130

in that the joint prior distribution of (Uj1 , Uj2) is the same for all j1 and j2. If the run was131

expected to peak on day k then one could increase the values of αj in some neighbourhood k,132

but this would require specific prior knowledge about when the peak was expected and how133

high it would be relative to the other days. Instead, we sought a prior that would incorporate134

the natural ordering of the data without the need for such specific prior information.135

To accomplish this, we construct an alternative prior for U which directly models the136

number of unmarked individuals passing the second trap each day. In particular, we model137

the expected log daily run size, E(log(Uj)), as a smooth function of j using the Bayesian138

penalized spline or P-spline model of Lang and Brezger (2004). Briefly, splines are semi-139

parametric regression functions formed as linear combinations of sets of basis functions140

associated with a set of knot points. The shape of a spline is very flexible and to avoid141

overfitting the data the complexity of the spline is controlled by two factors: the number142

of knot points and their locations, and the relationship amongst the regression coefficients.143
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The Bayesian P-spline algorithm uses the cubic B-spline basis functions (often chosen for144

their computational simplicity) and addresses overfitting by fixing a relatively large number145

of knots but specifying a prior which favours small changes in the coefficients.146

Letting B1(·), . . . , BK(·) denote the cubic B-spline functions for the chosen set of knots,147

we model U as:148

log(Uj) =
K∑
k=1

bkBk(j) + εj (4)

where the daily deviations from the spline, εj, are assumed to be independent, mean zero149

normal random variables with constant variance, τ 2
ε . Following the recommendations of Lang150

and Brezger (2004), we space the knot points evenly across the data at intervals of 4 days151

(or as close to this as t allows) and model the regression coefficients by the second difference152

prior:153

bk+1|b1, . . . , bk ∼ N(bk + (bk − bk−1), τ 2
b ) (5)

for k = 3, . . . , K with b1 and b2 assigned the improper flat prior, U(−∞,∞). The parameter154

τ 2
b controls the smoothness of the spline and is assigned an inverse gamma prior distribution155

with parameters αb and βb chosen so that E(τ 2
b ) is small, favouring small differences in the156

bk and hence a smooth fit, but Var(τ 2
b ) is large. Lang and Brezger (2004) recommend setting157

αb = 1 and choosing a small value for βb, but note that there is no common choice for all158

models. We found that the values αb = 1 and βb = .05 worked well in our application.159

Concerning the capture probabilties, the core model of MR02 defines a hierarchical prior160

for p which ignores possible temporal associations, and we have adopted exactly the same161

prior. Specifically, the prior distribution for p assumes that:162

logit(pj) ∼ N(ηp, τ
2
p ) (6)

independent but with common mean, ηp, and variance, τ 2
p , assigned diffuse normal and inverse163

gamma priors respectively. As an extension, MR02 do allow for the effect of covariates such164



8 Biometrics, 000 0000

that E(logit(pj)) = X ′jβ. The same approach can easily be incorporated in our model, but165

we have ignored such effects to keep the models simple.166

Finally, we consider two possible priors for the matrix of movement probabilities. The167

first is exactly that of MR02 which extends the log-normal model of Schwarz and Dempson168

(1994) (hereafter SD94) to the hierarchical Bayesian framework and the second provides a169

non-parametric alternative. SD94 proposed to model the times that marked fish take to move170

between the two traps as independent log-normal random variables with stratum specific171

parameters. Denoting the mean and variance of the log travel times for fish marked on day172

i by µ
(LN)
i and σ

(LN)
i

2
, the probability that a fish marked on day i passes the second trap on173

day i+ k is:174

θi,i+k =



0 k < 0

Φ

(
log(1+d)−µ(LN)

i

σ
(LN)
i

)
k = 0

Φ

(
log(k+1+d)−µ(LN)

i

σ
(LN)
i

)
− Φ

(
log(k+d)−µ(LN)

i

σ
(LN)
i

)
k > 0

(7)

where Φ(·) is the standard-normal cumulative distribution function and d corrects for the175

continuous release of marked fish (see pg. 100 of SD94 for details). MR02 extend this to the176

hierarchical Bayesian framework by assigning µ
(LN)
i and σ

(LN)
i

2
common normal and inverse177

gamma priors for all i. We call this the log-normal (LN) prior for Θ.178

To provide more flexibility in modelling the movement probabilities, we introduce an179

alternative prior based on the continuation ratio for ordinal response variables (see e.g.180

Dobson, 2002, sec. 8.4.4). Assuming the existence of a known cutoff value, ∆max, such that181

θi,i+k = 0 when k > ∆max for all i = 1, . . . , s, we model θi,i+k by:182

log

(
θi,i+k−1∑∆max

l=k θi,i+l

)
∼ N(µ

(NP )
k , σ(NP )2) (8)

for k = 1, . . . ,∆max and set θi,i+∆max = 1−
∑∆max−1

k=1 θi,i+k. The hyper-parameters µ
(NP )
k and183

σ(NP )2 are then assigned independent priors:184

µ
(NP )
k ∼ N(0, 1.5), k = 1, . . . ,∆max and σ(NP )2 ∼ Γ−1(.1, .1).
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Drawing on the hierarchical framework, this allows information about the movement prob-185

abilities in one strata to influence the posterior distribution of the movement probabilities186

in all other strata. In Section 3 we chose ∆max = max{k s.t. mi,i+k > 0 for any i}. Cases in187

which t < s + ∆max can easily be accommodated by adding s − t + ∆max columns of 0s to188

M and fixing the capture probabilities for these strata to 0. We call this the non-parametric189

(NP) model of Θ.190

In Section 3, we fit a variety of models to the sample data by combining the alternative191

priors for U , p, and Θ. Along with the Bayesian P-spline model of U (P-spline), we also192

considered a cubic model for E(log(Uj)) (Cubic), a hierarchical model that assigned all193

log(Uj) normal prior with common but unknown mean and variance (Hier), and a simple194

Bayesian model that assigned all log(Uj) identical normal priors with fixed mean and variance195

(Simple). Most of the selected models made use of the hierarchical prior for p in equation (6)196

(Hier), but we did consider the combination of the simple prior for U with a prior assuming197

p1 = . . . = pt (Pooled). Each of these choices of priors for U and p was then combined with198

both the log-normal (LN) and non-parametric (NP) models of the movement probabilities to199

create a total of 10 candidate models. In Sections 3 and 4, the models are labelled by triplets200

identifying the priors for U , p and Θ in order using the abbreviations given in parantheses201

above.202

The models Simple/Hier/LN and Hier/Hier/NP are almost equivalent to the model of203

MR02 with different choices of α and provided very similar results. However, the Markov204

chain Monte Carlo (MCMC) algorithms needed to compute summaries of the posterior205

distribution converged much more quickly for the new models. The models with constant206

capture probability (Simple/Pooled/LN and Simple/Pooled/NP) are Bayesian equivalents of207

the classical pooled-Petersen estimators which ignore changes in p and which are commonly208

used when recapture probabilities are low and data are sparse (Seber, 2002, pg. 60).209
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The complete structure of model P-spline/Hier/NP (the best fitting model in Section 3) is210

illustrated by a directed acyclic graph in Figure 1 and DAGs for the remaining models are211

provided in Web Figures 9 – 18. Prior distributions at the highest level of each model were212

chosen to be weakly informative about the respective parameters. For example, the prior213

assigned to ηp in equation (6) was chosen such that the prior median was close to .1 but the214

5th and 95th percentiles covered a broad range from .0 to .5.215

As with most complex Bayesian models, the posterior distributions are not tractable and216

inferences were obtained via MCMC simulation implemented in OpenBUGS (Thomas et al.,217

2006). Five parallel chains starting from diffuse initial values were run for each model and218

convergence was monitored via the Gelman-Rubin-Brooks diagnostics for both the mean and219

upper 97.5% quantile of each parameter (Brooks and Gelman, 1998). Each chain was run for220

a total of 500,000 iterations, the first 100,000 iterations were discarded, and the remaining221

iterations were thinned by a factor of 50 to save storage-space and reduce auto-correlations,222

producing a final sample size of 8,000 values from each of the 5 chains.223

Comparisons between the candidate models were assessed with the deviance information224

criterion (DIC) (Spiegelhalter et al., 2002). Denoting the deviance by:225

D(U ,p,Θ|n,M ,u) = −2 log(L(U ,p,Θ|n,M ,u))

the DIC for any model is:226

DIC = D(Û , p̂, Θ̂|n,M ,u) + 2pD

where Û , p̂,and Θ̂ are point estimates (taken to be the posterior means) and pD is a measure227

of the effective number of parameters computed as the mean value of the deviance over all228

MCMC iterations minus the value of the deviance at the posterior means (see Spiegelhalter229

et al. (2002, pg. 591) for further details). In essence, the DIC provides a Bayesian analog of230

the AIC that is easily computed for hierarchical models for which the number of parameters231

is poorly defined.232
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Fit of the models was assessed by computing posterior predictive p-values (also called233

Bayesian p-values) (Gelman and Meng, 1996; Gelman et al., 2003, pg. 157–177). For a given234

discrepancy measure, DM(Ω,X) with Ω representing the complete set of parameters and235

X the observed data, the Bayesian p-value is the probability that new data, X ′, generated236

from the posterior predictive distribution produces a greater discrepancy than the observed237

data (p = P (DM(Ω,X ′) > DM(Ω,X)|X)). Values of p close to 0 or 1 indicate that the238

observed data are unlikely under the assumed model. Different discrepancy measures can239

be chosen to assess different components of the model, and we have chosen three specific240

measures:241

DM1(Ω,X) = −2 · L(U ,p,Θ|n,M ,u)

providing an overall assessment of the model:242

DM2(Ω,X) =
t∑

j=1

√√√√ s∑
i=1

mi,j −

√√√√ s∑
i=1

niθi,jpj

2

comparing the observed and expected number of marked fish recaptured in each strata, and:243

DM3(Ω,X) =
s∑
i=1

t∑
j=1

(√
mi,j −

√
niθi,jpj

)2

assessing the number fish in each cell of M . The latter two are based on the Freeman-Tukey244

statistic as recommended for mark-recapture data by Brooks et al. (2000).245

An R package called BTSPAS (Bayesian Time-Stratified Population Analysis System)246

which implements the Bayesian P-spline model of U and both models of Θ along with247

computations of the DIC and Bayesian p-values is available from the Comprehensive R248

Archive Network (http://cran.r-project.org/index.html). This packages also includes249

a demonstration based on the analysis of the following section and implements extensions250

of this model to the case of diagonal M , separation of stocks (e.g., hatchery and wild fish),251

and inclusion of covariates for p.252

[Figure 1 about here.]253
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3. Application254

Here we apply the models described in the previous section to analyse modified data from255

the study of Atlantic salmon smolts migrating along the Conne River, Newfoundland, in256

1987. In this study, smolts were trapped at two sites along the river for 46 days between257

April 26 and June 10. A total of 4975 smolts were marked at the first trap of which 998258

(20%) were recaptured at the second trap along with 13,363 unmarked smolts.259

SD94 and MR02 both used this data set to illustrate their methods. SD94 excluded data260

from the first 3 and final 17 days of the study because small numbers fish were marked261

in these periods and estimated the total size of the run in the remaining period to be 75262

thousand fish with 95% CI (68,82) thousand. MR02 were able to analyse the entire data set263

and also estimated the total run size at 75 thousand with 95% CI (69,81) thousand.264

Although SD94 found it necessary to exclude some strata, data sparsity is not a severe265

issue. Our focus is to improve estimation for sparse data sets, and so we simulated new data266

with smaller capture probabilities by artificially reducing the numbers of fish captured at267

the second trap. To do this, we generated new values of mi,j and uj as:268

mi,j ∼ Binomial(m∗i,j, .2) and uj ∼ Binomial(u∗j , .2)

wherem∗i,j and u∗j are the original data values. This effectively reduced the capture probability269

on each day of the study by a factor of 5, but maintained the other relationships in the data.270

The new data set comprised the same number of marked fish released, but the total numbers271

of marked and unmarked smolts captured at the second site were reduced to 183 and 2697272

respectively. A complete listing of the modified data set is provided in Web Table 1.273

Tables 1 summarizes inferences about the total population size from the 10 candidate274

models, and Table 2 presents the DIC and Bayesian p-values. Summaries of the posterior275

distributions of U and p for the 5 models using the NP prior of Θ are depicted in Figures276
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2 and 3. Summaries of U and p for the models using the LN model were indistinguishable277

from these at the daily level and so have been omitted.278

One clear result is that the NP model of Θ was preferred to the LN model. Regardless279

of the priors chosen for U and p, switching from the LN to NP model of Θ decreased the280

DIC by more than 15 units (Table 2). In all cases this decrease reflected reductions in both281

pD and the deviance, implying that the NP model produced better fit to the data with a282

smaller effective number of parameters. Switching from the LN to NP model did move the283

first and second Bayesian p-values closer to 0, but not by enough to question the goodness-284

of-fit (Table 2). Despite the strong evidence in favour of the NP prior, the choice of model285

for Θ had only a small effect on the posterior distribution of NTot. For any combination of286

priors for U and p, the posterior mean of NTot was about 3 thousand higher under the NP287

model of Θ, but the 95% CIs from the paired models overlapped by roughly 90% (Table 1).288

Comparing alternative models of p given the NP model of Θ, the results clearly indicate289

that the hierchical model was preferable to the pooled model. Considering only the posterior290

distribution of NTot, one might be tempted to select model Simple/Pooled/NP as it provides291

a point estimate that is similar to those from the other models and the narrowest interval292

estimates (Table 1). However, the DIC for this model was higher than the DIC for all other293

models with the NP prior for Θ and the Bayesian p-values provided strong evidence that294

constant pj is not appropriate for this data. Results from the simulation study in Section295

4 also indicated that the interval estimates from the pooled model would have coverage far296

below the nominal value when the capture probabilities vary between strata.297

Considering the remaining four models which combined the NP model of Θ and the298

hierarchical model of p, the P-spline model of U was preferred both for its fit to the data299

and precision in estimating NTot. Figure 1 shows that the model Simple/Hier/NP provided300

relatively precise estimates at the peak of the run, but the posterior of Uj was highly variable301
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for j near 1 or t. Model Hier/Hier/NP decreased the variability of these values, as well asNTot,302

but increased the DIC (Table 2) indicating that the hierarchical prior with constant mean is303

also not appropriate for this data. In contrast, models Cubic/Hier/NP and P-spline/Hier/NP304

lowered the posterior variability of the individual Uj and of NTot (Figure 2 and Table 1),305

and also decreased both pD and the DIC (Table 2). Compared to each other, the curves fit306

to E(log(Uj)) were difficult to distinguish by eye (Figure 2) and the estimates of NTot were307

almost coincidental, but the DIC for model P-spline/Hier/NP was lower by 6 units (Table308

1). Bayesian p-values for these models presented no evidence to question their fit to the data309

(Table 2).310

Convergence diagnostics indicated that the Markov chains for all models converged quickly311

to stable distributions and that the samples obtained represented the posterior distributions312

well. Trace plots and GRB diagnostics comparing the 5 parallel chains for each model313

indicated that the burn-in period was more than sufficient. Web Appendix A provides details314

for model P-spline/Hier/NP (the model with the smallest DIC) and results were similar for315

the remaining models.316

Effects of the choice of prior for the P-spline parameters were assessed through a sensitivity317

analysis. We refit model P-spline/Hier/NP a total of 25 times for all combinations of 5 inverse318

gamma priors for τ 2
b and τ 2

ε that varied according to their location and relative spread. Details319

of the selected priors and complete results are provided in Web Appendix B. In summary, the320

sensitivity analysis indicated that the shape of the fitted spline and the posterior distribution321

of NTot were robust to the choice of priors. However, the posterior distributions of the322

individual Uj were affected by the choice of prior for τ 2
ε , and so we recommend that any323

analysis be repeated using a range of prior parameterizations – particularly if one is interested324

in local characteristics of the run (e.g., peak day).325

[Table 1 about here.]326
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[Table 2 about here.]327

[Figure 2 about here.]328

[Figure 3 about here.]329

4. Simulation Study330

To examine the P-spline model further, we conducted a simulation study based on the results331

of the analysis of Section 3. In short, 300 data sets were simulated from the model described332

by equations (1) and (2) with log(Uj) generated from a smooth curve similar to the spline fit333

in Section 3, θi,j generated from the LN model but truncated so that θi,i+k = 0 for k > 6, and334

pj generated from a distribution approximating the posterior obtained in Section 3. The 10335

models described previously were fit to each data set and compared based on 1) the resulting336

bias and mean-squared error (MSE) of the posterior mean of NTot as a point estimate of the337

true population size and 2) the width and coverage of the associated 95% credible intervals.338

Performance of the DIC for model selection was also assessed. Full details of the simulation339

study are presented in Web Appendix C; here, we summarize the key results.340

Overall, the Bayesian P-spline models produced estimates ofNTot that were nearly unbiased341

and had small MSE relative to the other models, and also gave 95% credible intervals with342

exactly the nominal coverage. The only models which performed similarly were those fitting343

a cubic polynomial to E(log(Uj)). These models actually had smaller bias and MSE, though344

coverage of their credible intervals was slightly below the nominal value. The models with345

the simple or hierarchical fit to E(log(Uj)) performed poorly in that they had large bias and346

MSE, and although point estimates from the models with pooled capture probabilities were347

nearly unbiased, the coverage of the credible intervals was only 2
3

of the nominal value.348

In accordance with these results, the DIC selected the Bayesian P-spline model ofE(log(Uj))349

for 66% of the simulated data sets (26% and 40% in combination with the LN and NP models350
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of Θ respectively). The cubic model was selected for 30% of data sets (11% and 19% in351

combination with the LN and NP models of Θ), and of the remaining 4% of the simulated352

data sets, model Simple/Pooled/NP was selected 8 times, Simple/Hier/NP 3 times, and353

Hier/Hier/NP once. The fact that the cubic model was selected for almost 1
3

of the data354

sets was not surprising given that a cubic polynomial fits the true E(log(Uj)) very closely355

and requires fewer parameters than the spline. Despite the similar performance of the two356

models, we prefer the Bayesian P-spline because of its abilities to fit a wide range of curves357

and to properly account for model uncertainty. These issues are discussed further in Section358

5. Similar DIC values were also to be expected from the alternative priors for Θ as the true359

θij were truncated, as in the NP model, but were well approximated by the LN model. These360

results confirm that the differences in DIC seen in Section 3 provide strong evidence for361

selecting between models and further support our conclusion that P-Spline/Hier/NP is the362

best of the candidate models for the subsampled Atlantic salmon data.363

5. Conclusion364

The results of Sections 3 and 4 clearly demonstrate the advantages of the P-spline model ofU365

for estimating the size of a population from temporally-stratified mark-recapture data. The366

P-spline accounts for the natural ordering of the data by explicitly modelling the expected367

(log) population size per strata as a smooth function of time. The result is a nearly unbiased368

estimate of NTot that is as or more precise than those from the other models.369

The model which produced results most similar to those of the P-spline model was the370

Cubic model of E(log(Uj)). The cubic and P-spline curves fit to E(log(Uj)) in Section 3371

were almost identical and these models performed almost equally well in the simulation372

study. However, it is easy to imagine data for which the cubic would perform poorly, for373

example if the run size had two distinct peaks. Several strategies might be used to fit higher374

degree polynomials to such data, but each has drawbacks. One might test polynomials with375
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increasing degree until an adequate model was found, but this would constitute data-snooping376

and variance estimates would not account for the trial-and-error process. Alternatively, a high377

degree polynomial could be fit to all data, but this would lead to overfitting, and reversible378

jump MCMC could be used to select the degree of the polynomial (Green, 1995), but this379

requires more complex computation. The Bayesian P-spline solves the problem of unknown380

model complexity by allowing flexibility in the degree of the curve while penalizing overly381

complex models. Moreover, by including τ 2
b as an unknown parameter in the model the382

variance estimates properly account for uncertainty in the complexity.383

This is the first time, to our knowledge, that splines have been applied to model changes in384

population size over time from mark-recapture data, though similar methods have been used385

to model other aspects of population dynamics. Methods using splines to allow flexibility386

in the relationship between covariates and survival probabilities have been presented by387

Gimenez et al. (2006), Bonner et al. (2009), Gimenez and Barbraud (2009), and Gimenez388

et al. (2009). While the nature of these models are similar, and all apply Bayesian inference,389

the specific spline implementations vary. For example, Gimenez et al. (2006) applied a390

penalized spline approach using the truncated polynomial basis functions, whereas Bonner391

et al. (2009) applied a free-knot method in which the knot locations were chosen as part392

of the inference procedure. Gimenez and Barbraud (2009) introduced a two-stage inference393

procedure to reduce computation by approximating the likelihood function, and Gimenez394

et al. (2009) developed fitness surfaces that simultaneously model the effects of two or395

more variables on survival with multivariate splines. Each method has advantages and396

disadvantages, and there is a large body of literature on splines (see for example Ruppert397

et al., 2003). While it is not clear if one method is particularly suited to modelling mark-398

recapture data, the Bayesian P-spline model of Lang and Brezger (2004) has worked well in399

the examples we have tried thus far.400
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As mentioned previously, there is a variant of the two sample experiment which requires401

only one trap. When only one trap is used, a subset of the individuals captured in each402

strata are marked and released back into the population upstream so that they pass the403

trap a second time. The only difference in modelling is that the marked fish do not need404

to be recounted when they pass the trap a second time and so the total population size405

satisfies NTot = UTot. An example of the one trap experiment is provided in (Bonner, 2008).406

In some studies it may also be known that θi,j = 1(i = j) and so it is not necessary to model407

the movements of the marked fish. Such data are called diagonal because M is a diagonal408

matrix and examples of fitting the P-spline model to such data are provided by Schwarz409

et al. (2009).410

The P-spline model also provides a way to deal with some common data anomalies. Fish-411

eries traps often cannot be operated continuously because of adverse weather conditions, and412

the data from such studies may contain missing values in some strata. Classical estimators413

ignore these strata completely, while standard hierarchical Bayesian models can produce414

inference by drawing on the data from other days but treat all other strata equally rather415

than weighting information from the neighbouring strata more heavily. The P-spline model416

can easily be fit to data with missing days and essentially smooths the run size across the417

strata with unobserved data, allowing for uncertainty by addition of the error term. Of course,418

this relies on the untestable assumption that the patterns in the observed data continue over419

the missing strata.420

One drawback of the P-spline approach is that MCMC simulations can be time consuming421

and sometimes misleading. While the algorithms implemented in OpenBUGS generally422

performed well, we did encounter one data set in the simulation study in which the single423

chain became trapped in a local maximum of the posterior density. The error was fixed simply424

by choosing a new seed value, but this emphasized the importance of running multiple chains425
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to assess convergence, as we did in Section 3. Gains from the model will also be small if the426

run size has a very simple underlying shape or if the number of strata is small so that427

the smoothness cannot be well estimated. The model may also produce misleading results428

if E(log(Uj)) is not smooth – for example, if there are jumps in Uj associated with sudden429

outmigration or the release of hatchery fish. If the timing of such events are known then they430

can be accommodated by incorporating breaks in the P-spline, and an example is provided431

in Bonner (2008).432

Another concern is that the model treats the expected number of unmarked fish in each433

stratum, E(log(Uj)), as the parameter of interest rather than the total number of fish,434

E(log(Nj)). The difficulty is that Nj does not appear in the likelihood in equation (3) which435

conditions on n. One could adopt a likelihood which models captures at both locations, as436

in Plante et al. (1998), and apply the P-spline to the numbers of fish passing the first trap437

in each strata, but this likelihood effectively doubles the number of parameters. Instead,438

we have considered applying the Bayesian melding algorithm of Poole and Raftery (2000)439

which allows specification of prior information for derived parameters like Nj or NTot. Note,440

however, that if relatively few fish are marked then Nj ≈ Uj and whether the prior is defined441

for Nj or Uj will have little effect on inference.442

Another minor issue is that the coefficients of the P-spline do not have direct interpre-443

tations. However, inference about quantities like run timing can easily be generated from444

the MCMC output. For example, inference about the day by which 50% of the population445

has passed the traps can be generated simply by computing this quantity for each iteration446

and then computing posterior summary statistics. Inference about many other biological447

quantities, like the peak day of the run, can be obtained in exactly the same way.448

Although we have focused on smoothing abundance, the Bayesian P-spline could also be449

applied to smooth p or the elements of Θ. If pj was expected to change smoothly with450
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time then it would be sensible to model E(logit(pj)) in a similar manner. The Bayesian451

P-spline model could also be applied to multiple sets of parameters simultaneously, though452

we found that such models did not perform well in application to the Conne River data set.453

Specifically, models which smoothed both U and p produced poor estimates of abundance454

and DIC values that were much higher than those of the other models. Developing techniques455

to smooth multiple parameters simultaneously is a continuing aspect of our research.456
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Figure 1. Directed acyclic graph (DAG) illustrating the structure of the Bayesian P-spline
model with non-parametric travel times (P-Spline/Hier/NP), the best fitting model for the
subsampled Conne River data. Ellipses represent nodes that are stochastic and diamonds
nodes that are deterministic conditional on their parents. The rectangular frames represent
structures that are repeated over the days of trapping at either the first or second trap
locations. Nodes outside of these frames do not repeat.
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Figure 2. Estimated daily abundance of unmarked fish for the subsampled Conne River
Atlantic Salmon data. Each panel summarizes the posterior distribution of log(Uj), j =
1, . . . , 46, resulting from one of the 5 base models combined with the non-parametric model
of the travel time probabilities, as indicated. Points represent the daily posterior medians
and the error bars represent the 95% credible intervals. The curves in the final two panels
represent the functions fit to E(log(Uj)).
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Figure 3. Estimated daily capture probabilities for the subsampled Conne River Atlantic
Salmon data. Each panel summarizes the posterior distribution of logit(pj), j = 1, . . . , 46,
resulting from one of the 5 base models combined with the non-parametric model of the
travel time probabilities, as indicated. Points represent the daily posterior medians and the
error bars represent the 95% credible intervals.
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Table 1
Summaries of the posterior distributions for NTot obtained from the 10 models fit to the subsampled Conne River

Atlantic salmon data. The first two columns provide the posterior mean (N̂Tot) and 95% highest posterior density
credible interval (95% CI) in thousands of fish. The final two columns give the width of this credible interval

absolutely (CI Width) and as a percentage of the posterior mean (% CI Width). Each model is labelled by a triplet
identifying the components of the prior as described in the text.

Model N̂Tot 95% CI CI Width % CI Width

Simple/Pooled/LN 77 (67,89) 22 29
Simple/Pooled/NP 80 (69,92) 22 28
Simple/Hier/LN 87 (10,107) 37 42
Simple/Hier/NP 90 (73,111) 37 42
Hier/Hier/LN 81 (67,100) 33 40
Hier/Hier/NP 85 (70,103) 32 38
Cubic/Hier/LN 76 (64,90) 26 35
Cubic/Hier/NP 79 (67,92) 26 33
P-Spline/Hier/LN 76 (64,89) 25 33
P-Spline/Hier/NP 78 (66,92) 26 33
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Table 2
Model selection and goodness-of-fit results for the 10 Bayesian models fit to the subsampled Conne River Atlantic

Salmon smolt data. The left half of the table presents the values of pD and DIC for each model, and the right half
presents the Bayesian p-values for each discrepancy measure. The models are labelled by triplets identifying the

components of the prior as described in the text.

Model Model Selection Bayesian P-values
pD DIC 1 2 3

Simple/Pooled/LN 83.4 691 0.26 0.01 0.02
Simple/Pooled/NP 80.7 671 0.05 0.00 0.04
Simple/Hier/LN 94.4 672 0.41 0.29 0.32
Simple/Hier/NP 89.5 656 0.19 0.19 0.29
Hier/Hier/LN 93.0 676 0.47 0.20 0.24
Hier/Hier/NP 88.0 659 0.17 0.17 0.23
Cubic/Hier/LN 84.6 670 0.58 0.25 0.31
Cubic/Hier/NP 79.8 650 0.28 0.21 0.32
P-Spline/Hier/LN 85.1 666 0.55 0.26 0.33
P-Spline/Hier/NP 79.7 644 0.28 0.24 0.36


