
Biometrics 00, 000–000 DOI: xxxx

MMM 0000

Connecting the Latent Multinomial1

Matthew R. Schofield1∗, Simon J. Bonner2

1Department of Mathematics and Statistics, University of Otago, P.O. Box 56 Dunedin 9054, New Zealand

2Department of Statistics, University of Kentucky, Lexington KY 40536, U.S.A.

*email: mschofield@maths.otago.ac.nz

2

Summary: Link et al. (2010) define a general framework for analyzing capture-recapture data with potential

misidentifications. In this framework, the observed vector of counts, y, is considered as a linear function of a vector

of latent counts, x, such that y = Ax, with x assumed to follow a multinomial distribution conditional on the

model parameters, θ. Bayesian methods are then applied by sampling from the joint posterior distribution of both x

and θ. In particular, Link et al. (2010) propose a Metropolis-Hastings algorithm to sample from the full conditional

distribution of x, where new proposals are generated by sequentially adding elements from a basis of the null space

(kernel) of A. We consider this algorithm and show that using elements from a simple basis for the kernel of A may

not produce an irreducible Markov chain. Instead, we require a Markov basis, as defined by Diaconis and Sturmfels

(1998). We illustrate the importance of Markov bases with three capture-recapture examples. We prove that a specific

lattice basis is a Markov basis for a class of models including the original model considered by Link et al. (2010) and

confirm that the specific basis used by Link et al. (2010) for their example with two sampling occasions is a Markov

basis. The constructive nature of our proof provides an immediate method to obtain a Markov basis for any model

in this class.
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1. Introduction3

The development of capture-recapture methodology has a long history, allowing estimation4

of demographic parameters of interest for animal populations (see Amstrup et al. 2005,5

for a review). Similar methods have also been used to study human populations, including6

intravenous drug users (King et al. 2009) and human rights abuse victims (Lum et al. 2013).7

In general, a capture-recapture experiment consists of a series of capture occasions on which8

overlapping subsets of the population are observed. For animal populations the occasions9

are usually ordered in time while for human populations they may comprise lists obtained10

from different sources. It is assumed that each individual has a unique identifying mark that11

is either given or realized when the individual is first captured and this mark can be used to12

identify the individual on subsequent occasions. In this paper, we are concerned with fitting13

capture-recapture models to data that provide an incomplete or inaccurate representation14

of the true encounters of individuals during the experiment. This may occur if the data15

consist of incomplete summary statistics or if individuals are misidentified on some occasions.16

Examples of capture-recapture studies that are prone to identification errors include (i) multi-17

list studies in which individuals may be matched based on personal information such as name,18

birth date, medical record number (Seber et al. 2000, Lee et al. 2001, Sutherland and Schwarz19

2005, Fienberg and Manrique-Vallier 2009), (ii) animal studies in which individual identity20

is found from non-invasive sampling, e.g. genetic information from scat or hair (Wright et al.21

2009, Link et al. 2010, Yoshizaki et al. 2011) or photographic ID of individuals (Yoshizaki22

et al. 2009, Bonner and Holmberg 2013, McClintock et al. 2013), and (iii) studies in which23

(at least) two sources of capture-recapture information are available for the same population24

with little to no information about how the individual IDs in one source corresponds to25

individual ID from the other sources (Bonner and Holmberg 2013, McClintock et al. 2013).26

Our focus is on the algorithm for a general class of mark-recapture models allowing for27
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misidentification considered by Link et al. (2010) (hereafter L2010). This class is described by28

the latent multinomial model, in which an observed data vector, y can be expressed as a linear29

function of a latent data vector, x, modeled by a multinomial distribution with unknown30

parameters θ, denoted [x|θ]. The notation [x] denotes the probability density function fX(x)31

for a continuous random variable X or the probability mass function Pr(X = x) for a discrete32

random variable X. The linear function is expressed as33

y = Ax, (1)34

where A is called the configuration matrix (a matrix of known constants that depends on35

the specific problem) with more columns than rows. We continue to call this modeling setup36

the latent multinomial model, even though the setup is flexible and can accommodate other37

probability mass functions [x|θ], such as the Poisson model considered by Lee (2002).38

The goal is to sample from the joint posterior distribution [θ,x|y] using Markov chain39

Monte Carlo (MCMC) by alternating between sampling from the full conditional distribu-40

tions [θ|x,y] and [x|y,θ]. The difficulty with this approach is in specifying an updating41

scheme for x. That is, how to efficiently sample from [x|y,θ] in such a way so that every42

x vector that satisfies (1) has a positive probability of being reached at some point during43

the updating. We consider three examples demonstrating that the scheme for updating x44

proposed by L2010 may not produce an irreducible Markov chain for models within the latent45

multinomial framework. We then present theory identifying a class of models for which the46

specific algorithm does produce irreducible Markov chains, and show more generally how47

these methods fit within the framework of algebraic statistics. This allows us to develop an48

extension of the algorithm which can be used to generate valid MCMC samplers for the49

posterior distributions from a broader class of latent multinomial models.50

The MCMC algorithm we consider throughout this manuscript is presented in Figure 1.51

Starting with an initial state x0 satisfying the linear constraint, a proposal is generated on52
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the first iteration by adding or subtracting an element chosen randomly from a subset of53

the kernel (or null space) of A, B = {a1,a2, . . . ,am} ⊂ ker(A), with cardinality m. The54

proposal is then accepted or rejected with probability determined by the Hasting’s ratio, r,55

and the algorithm continues to the second iteration. This algorithm is a modification of that56

presented by L2010, with three differences: (i) L2010 steps through all m elements in B in57

order instead of selecting an element at random on each iteration, (ii) when stepping through58

every element in B, L2010 multiplies element ai by a coefficient c ∈ {−Ci, . . . ,−1, 1, . . . , Ci}59

in order to improve convergence, and (iii) L2010 assumes that B is a basis for ker(A), while60

we allow B to be a more general subset that spans ker(A). The first two differences may61

impact the efficiency of the algorithm but do not change the stationary distribution of the62

resulting Markov chains, and we do not consider these differences further. Our focus is on63

the third difference and the effect that the set B can have on the generated Markov chains64

and their stationary distributions.65

[Figure 1 about here.]66

To illustrate the problems that may occur if B is poorly specified we consider three examples67

of models which fit into the latent multinomial framework. First we consider the same68

closed population mark-recapture model with misidentification considered by L2010. This69

model, called Mtα, assumes that captures occur according to a closed population model with70

time dependent capture probabilities and that errors in identifying an individual are unique71

and create ghost histories with single captures. Second, we consider a multi-list modeling72

problem in which summary statistics are presented in place of the full data set, possibly73

for privacy reasons. Our aim is to sample from possible complete data sets with the given74

sufficient statistics. Finally, we consider a more complicated model of misidentification in75

mark-recapture which allows for one marked individual to be identified as another previously76

marked individual. Full details of these models and the issues regarding the selection of the77
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set B to be used in the algorithm in Figure 1 are provided in sections 3, 4, and 5. As78

motivation, we consider the output from Markov chains constructed using the algorithm in79

Figure 1 for each of the three examples. For each example, we defined B to be a basis for80

ker(A) as in L2010 and ran two parallel chains, each of which started from a different initial81

value. For both model Mtα and the multi-list model with sufficient statistics, despite strong82

evidence that each chain has converged, it is clear that the two chains are not sampling from83

the same distribution for a given quantity of interest (Figure 2). This is even more apparent84

in the third example where one of the two chains never moves from its initial value.85

[Figure 2 about here.]86

The problem in all three examples is that the stationary distribution reached by the Markov87

chains produced by the algorithm in Figure 1 may depend on the chosen set, B and the initial88

value of x. Although the values of x proposed on each iteration are guaranteed to satisfy the89

linear constraint the resulting Markov chains may not reach all points in the sample space90

and the stationary distributions may be dependent on the initial values. In the next section91

we provide a basic introduction to the field of algebraic statistics and the results of Diaconis92

and Sturmfels (1998) and others who have explored approaches for sampling from x from93

a linear constraint as in (1) in other application areas. We then consider the implications94

of this theory to show why the MCMC algorithms failed above (Figure 2), and how valid95

MCMC samplers can be constructed for each of the three examples.96

2. Introduction to algebraic statistics97

Sampling x in the presence of the linear constraint in (1) is not unique to capture-recapture98

problems. In a seminal paper in algebraic statistics, Diaconis and Sturmfels (1998) considered99

a linear constraint of the same form when developing conditional goodness-of-fit tests for100

contingency tables (see Karwa and Slavkovic 2013, for a recent review). That is, they101
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considered how to construct an MCMC algorithm to sample different contingency tables102

with common (fixed) row and column sums (such ideas can also be extended to multi-way103

contingency tables).104

To consider the problem at hand in more detail we will summarize several definitions and105

results from linear algebra in this section (basic definitions regarding kernels and bases are106

provided in the supplementary materials). We will use a 3× 3 contingency table example to107

illustrate many of the ideas. The table is108

x11 x12 x13 x1·

x21 x22 x23 x2·

x31 x32 x33 x3·

x·1 x·2 x·3

109

where xij is the value in the ith row and jth column, x·j refers to the sum of the jth column110

and xi· refers to the sum of the ith row. The column and row sums are vectorized to give111

the vector of summary statistics112

y = (x·1, x·2, x·3, x1·, x2·)
′.113

Note that we need not include the third row sum as this is a derived quantity of the other114

elements of y. The individual entries in the table are vectorized to give115

x = (x11, x21, x31, x12, x22, x32, x13, x23, x33)
′.116

The specification is completed with117

A =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0


118

so that the constraints inherent in a contingency table follow (1). If we have column/row119
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sums given by120

y = (5, 3, 2, 0, 4)′121

then two contingency tables compatible with these constraints have entries122

x1 = (0, 2, 3, 0, 1, 2, 0, 1, 1)′ and x2 = (0, 3, 2, 0, 0, 3, 0, 1, 1)′. (2)123

Our goal is to specify an MCMC algorithm that samples from the set of vectors x that124

satisfy (1) for a particular y. This is defined as the y-fiber (or simply fiber) Fy,125

Fy = {x ∈ Nd : y = Ax},126

where d is the dimension of x and N = {0, 1, . . .}. L2010 refers to Fy as the feasible set.127

To move between elements of the fiber, we make use of the lattice kernel kerZ(A). The128

lattice kernel is the integer valued subset of the kernel,129

kerZ(A) = ker(A)
⋂

Zd = {x ∈ Zd : Ax = 0}.130

In algebraic statistics, a move is defined to be any element of the lattice kernel, such that131

the vector v is a move if v ∈ kerZ(A). An implication of this is that if x1,x2 ∈ Fy then132

x2−x1 is a move. The idea is that the elements of the lattice kernel can be added to a vector133

that satisfies the linear constraint and the result is guaranteed to still satisfy the constraint.134

However, it is not practical to consider all elements of the lattice kernel when updating x as135

ker(A) is potentially very large and difficult to compute. Instead we want to find a smaller136

set of moves B = {v1, . . . ,vm} ⊂ kerZ(A) that can be used to update x. That is, we require137

a smaller set of moves so that it is possible to move between all elements of Fy using the138

algorithm in Figure 1.139

The suggestion of L2010 was to use a basis for ker(A) for this set of moves. However, we140

do not wish to construct a basis for ker(A), but instead a lattice basis for the integer lattice141

kerZ(A). A lattice basis is a set of linearly independent vectors where every v ∈ kerZ(A)142

can be found as a linear combination of the lattice basis vectors using integer coefficients.143
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If we insist on using a basis for ker(A), it may not be possible to reach all solutions using144

only integer values of the coefficients, c, as specified in the algorithm in Figure 1. However,145

even if we choose to use a lattice basis for B it may be necessary to pass through one (or146

more) vectors containing negative elements when applying moves one at a time to transition147

between elements in the fiber Fy. As vectors x containing negative elements can never be148

accepted, the use of a lattice basis for B may result in sampling from a subset of the fiber149

Fy when using the algorithm in Figure 1. This explains the observed results in the three150

examples shown in Section 1: the two chains are exploring different subsets of the fiber.151

These ideas are formalized using the concept of connectivity. Elements xj,xk ∈ Fy are152

connected using the set V = (v1, . . . ,vm) if there are moves vi ∈ V , i ∈ {1, . . . ,M} so153

that we can start from xj and add or subtract these moves one at a time to reach xk154

without any element in any of the partial sums ever being negative (note that the elements155

vi, i = 1, . . . ,M need not be distinct and some elements may be repeated multiple times).156

That is, there exist ε1, . . . , εM ∈ {−1, 1} such that157

xk = xj +
M∑
j=1

εjvj and x1 +
L∑
k=1

εkvk ∈ Fy, L = 1, . . . ,M − 1.158

We then say that the fiber Fy is connected by V if every pair of elements in the fiber are159

connected.160

We can apply the algorithm in Figure 1 to the 3× 3 contingency table example using the161

elements of a lattice basis. A lattice basis can be found using the Hermite normal form (Aoki162

et al. 2012, pg. 53). Unless otherwise stated, all lattice bases provided in this manuscript163

are found using this approach. We note that the lattice basis obtained is not unique and a164

different basis is often found if one reorders the columns of A (and corresponding entries of165
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x). For the contingency table, a lattice basis is given by elements LB1 – LB4 in (3)166

x11 x21 x31 x12 x22 x32 x13 x23 x33

LB1 1 −1 0 −1 1 0 0 0 0

LB2 −1 0 1 1 0 −1 0 0 0

LB3 1 −1 0 0 0 0 −1 1 0

LB4 0 0 0 1 0 −1 −1 0 1

(3)167

If we attempt to apply any of the elements LB1 — LB4 to either x1 or x2 in (2) we168

immediately find a problem. Either adding or subtracting any of LB1 – LB4 results in169

at least one negative count in the proposal and will lead to it being automatically rejected.170

That means there is no way to use the elements LB1 – LB4 as moves in the algorithm in171

Figure 1 and successfully transition between the two solutions in (2). In fact, we are unable172

to move between any two valid solutions. As a result, the lattice basis in (3) does not connect173

the fiber for this example. One solution is to change the algorithm in Figure 1 to use elements174

of a lattice basis in a linear combination instead of one-at-a-time. While attractively simple,175

Diaconis and Sturmfels (1998) implemented this for several examples and found that it was176

inefficient and did not work well in practice. We do not consider this further.177

To overcome the shortcomings of constructing moves via integer multiples of an element178

from a lattice basis, we take a Markov basis for the set B (Diaconis and Sturmfels 1998). A179

Markov basis is a larger set of elements in kerZ(A) that connects all fibers Fy irrespective180

of the given values in y. A finite set M⊂ kerZ(A) is a Markov basis if, for any y such that181

Fy 6= ∅ and for all elements x1,x2 ∈ Fy, x1 6= x2, there exist M > 0, v1, . . . ,vM ∈M and182

ε1, . . . , εM ∈ {−1, 1} such that183

x2 = x1 +
M∑
j=1

εjvj and x1 +
L∑
k=1

εkvk ∈ Fy, L = 1, . . . ,M − 1.184

The first condition says that we can use moves from a Markov basis as in the algorithm in185

Figure 1 to move between any two elements of our fiber. The second condition says that186

when moving between any two elements in the fiber, we always remain in the fiber (i.e. we187

never encounter a negative count).188
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Although Markov bases are relatively easy to describe there is no simple algorithm for their189

computation. Diaconis and Sturmfels (1998) show how a Markov basis can be computed190

using techniques from commutative algebra. The theory is based on what is now known as191

the Fundamental Theorem of Markov Bases which describes how finding a Markov basis is192

equivalent to finding a set of generators of a toric ideal in a polynomial ring associated with193

the matrix A. We refer the interested reader to Cox et al. (2007) for details on commutative194

algebra and to Diaconis and Sturmfels (1998), Drton et al. (2009), Aoki et al. (2012) and the195

references therein for additional information on the generation of Markov bases in algebraic196

statistics. Unless otherwise stated, we use the freely available software 4ti2 (Hemmecke et al.197

2013) to compute the Markov bases for the examples in this manuscript.198

For the 3× 3 contingency table, a Markov basis consists of the nine elements in (4)199

x11 x21 x31 x12 x22 x32 x13 x23 x33

MB1 0 0 0 0 1 −1 0 −1 1

MB2 0 0 0 1 −1 0 −1 1 0

MB3 0 0 0 1 0 −1 −1 0 1

MB4 0 1 −1 0 −1 1 0 0 0

MB5 0 1 −1 0 0 0 0 −1 1

MB6 1 −1 0 −1 1 0 0 0 0

MB7 1 −1 0 0 0 0 −1 1 0

MB8 1 0 −1 −1 0 1 0 0 0

MB9 1 0 −1 0 0 0 −1 0 1

(4)200

It is a straightforward exercise to confirm that we can transition between the two solutions in201

(2) by adding or subtracting moves from (4) one-at-a-time without encountering a negative202

count. More importantly, the moves in (4) can be used to connect any two solutions in the203

same fiber, no matter what value of y is observed.204

There is often a need to analytically find a Markov basis for a given problem. Even though205

tools like 4ti2 are freely available, computation of Markov bases remains challenging. As we206

discuss later, for many of the capture-recapture examples we have explored, 4ti2 can fail to207

compute Markov bases for studies with a moderate to large number of sampling occasions.208
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As we know of no simple test to confirm whether a specified set of moves B is a Markov209

basis, we often need to rely on theoretically derived Markov bases to confirm that our MCMC210

algorithms are valid. In the following section we find such a theoretical result for a class of211

capture-recapture models including Mtα.212

3. Model Mtα and Simple Corruptions213

Here, we examine model Mtα, the specific model of misidentification considered by L2010.214

We fit this model into a larger class of models in which any identification error results in215

what we refer to as a simple corruption. We then show that for any model in this class,216

we can construct a lattice basis that is guaranteed to connect every element of the fiber,217

irrespective of y, i.e. it is also a Markov basis.218

Model Mtα builds on the standard closed population model with time-dependent capture219

probabilities, model Mt of Otis et al. (1978), by allowing for individuals to be misidentified220

when captured. The model assumes that all errors are unique meaning that an individual221

cannot be identified as another individual and the same error cannot occur multiple times.222

The result is that an error on the jth capture occasion leads to a ghost observed history223

containing a single observation on the jth occasion.224

For this model, the vector of summary statistics, y, contains the counts of the 2K − 1225

observable capture histories. The vector of latent variables contains the counts of the possible226

true histories constructed from the events:227

• 0 – the individual was not captured,228

• 1 – the individual was captured and correctly identified,229

• 2 – the individual was captured and incorrectly identified.230

For example, for a study with K = 5 capture occasions the true history 01221 would generate231

three observed histories: 01001, 00100, and 00010. Including the null history 0 . . . 0, the vector232
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of true counts has length 3K . The configuration matrix, A, has dimension (2K − 1) × 3K233

and Aij = 1 if the jth true history generates the ith observed history and is equal to zero234

otherwise. For example, the column corresponding to the history 01221 would contain three235

non-zero entries in the rows associated with the observable histories 01001, 00100, and 00010.236

A description of the model along with the vectors x and y and matrix A for K = 2 are237

given in the supplementary materials, with more details in L2010.238

A feature of Mtα is that whenever an error in identification occurs, it involves only one239

individual and results in one or more observed histories. We define such an error as a simple240

corruption. For example, the errors in true history 01221 above affect no other true history241

and lead to three observed histories. Another example of simple corruptions are the errors242

that occur when multiple marks cannot be matched, as described in Bonner and Holmberg243

(2013) and McClintock et al. (2013). Suppose that a study uses photographs to identify244

individuals and that photographs taken from the left or right side cannot be matched without245

further information. In this case, any individual that is photographed from both the left and246

right sides on different occasions will contribute two histories to the observed data set. Using247

the events L and R to denote photographs from the left and right, the true history 0LRRL248

would generate observed histories 0L00L and 00RR0. In this case, each true history will249

contribute one or two histories to the observed data set.250

For a model that contains only simple corruptions, we have the following theorem:251

Theorem 1: Suppose that: (i) A contains only the values 0 and 1 and (ii) the columns252

of A contain all of the columns of the identity matrix. Then there exists a lattice basis253

L = {v1, . . . ,vm}, which is also a Markov basis.254

The first condition (values of 0 and 1) occurs under the assumption of simple corruption, while255

the second condition (columns of the identity matrix) occurs when every observable history256

is also a true history in which there is no misidentification. Provided these assumptions hold,257
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then we can use the algorithm in Figure 1 with a suitable lattice basis L and connect the258

fiber. The proof of this theorem is provided in the supplementary materials, along with a259

description of how to construct the lattice (Markov) basis L.260

The conditions of Theorem 1 are satisfied for model Mtα, so that for K = 2 we obtain the261

Markov basis in (5)262

x00 x01 x02 x10 x11 x12 x20 x21 x22

MB1 1 0 0 0 0 0 0 0 0

MB2 0 −1 1 0 0 0 0 0 0

MB3 0 −1 0 −1 0 1 0 0 0

MB4 0 0 0 −1 0 0 1 0 0

MB5 0 −1 0 −1 0 0 0 1 0

MB6 0 −1 0 −1 0 0 0 0 1

(5)263

The basis in (5) is identical to that presented by L2010 for model Mtα when K = 2.264

The approach of L2010 to finding a basis involves choosing pivotal (or constraining)265

variables when solving the set of equations Ax = 0 (a full description is available either in266

L2010, pg 180–181, or in the supplementary materials). L2010 chose specific pivotal variables267

(x01, x10 and x11) when finding the basis for model Mtα when K = 2. However, it was implied268

that this choice was arbitrary and no guidance was given as to how to select pivotal variables269

when K > 2. It turns out that changing the pivotal variables can lead to different sets of270

basis vectors which may not be Markov bases. We show in the supplementary materials that271

for K = 2 and a different set of pivotal variables, x22, x20 and x11, the resulting basis differs272

from that in (5). We also show that when the conditions of Theorem 1 are satisfied, there is273

a specific choice of pivotal variables guaranteed to return the Markov basis L. In particular,274

if we order x as in L2010 for model Mtα and take the variable corresponding to the leading275

non-zero entry in each row of A as pivotal (as was done by L2010 for K = 2), the basis276

found will be the Markov basis L.277

Theorem 1 ensures that there is at least one lattice basis which is also a Markov basis for278

model Mtα. However, it does not imply that every lattice basis is a Markov basis. For model279



Connecting the Latent Multinomial 13

Mtα and K = 2 another lattice basis (found by hand) is given in (6)280

x00 x01 x02 x10 x11 x12 x20 x21 x22

LB1 1 0 0 0 0 0 0 0 0

LB2 0 −1 1 0 0 0 0 1 −1

LB3 0 0 1 0 0 0 1 0 −1

LB4 0 0 0 1 0 0 −1 0 0

LB5 0 0 −1 0 0 1 −1 1 −1

LB6 0 0 0 0 0 0 0 1 −1

(6)281

Suppose the observed data are y = (363, 22, 174) (as in L2010), then two elements in the fiber282

are x1 = (0, 363, 0, 22, 174, 0, 0, 0, 0)′ and x2 = (0, 361, 2, 22, 174, 0, 0, 0, 0)′. We are unable to283

move between these two using LB1 – LB6 in (6) as moves in the algorithm in Figure 1. In284

particular, if we start at (the observed history) x1 the moves LB2, LB3, LB5 and LB6 will285

lead to automatic rejections because they will always propose a negative value. This means286

that x1 and x2 are not connected and thus the fiber is not connected.287

We repeated the analysis of L2010 using both the Markov basis in (5) and the lattice288

basis in (6) using the same prior distributions as in L2010 (we used only one of the priors289

L2010 considered for α; a beta distribution with parameters 19 and 1). In both cases we290

implemented the algorithm in Figure 1 using x1 as the starting value with interest in the291

abundance N . We checked convergence via trace plots and plotted the resulting distribution292

for N |y in both cases (Figure 3). The lattice basis in (6) leads to a distribution for N that293

is substantially different from the true posterior distribution and could lead to incorrect294

decision making.295

[Figure 3 about here.]296

We note that efficiency gains can be made if there are observable histories with zero count.297

In particular, we can delete the entries in y and the rows of A corresponding to the zero298

counts before deleting any columns of A and corresponding entries of x that are known to299

have zero count. Provided the assumptions of Theorem 1 are still satisfied by the resulting300
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configuration matrix then we can still find a set of moves guaranteed to connect all elements301

in the fiber. The resulting set of moves is no longer a Markov basis but a Markov subbasis302

(Chen et al. 2006) as it is only valid for the observed y. This corresponds to the approach303

taken by both Bonner and Holmberg (2013) and McClintock et al. (2013) for data with304

multiple marks that could not be matched.305

This section shows that we must take care even with simple corruptions to ensure that the306

lattice basis we are using is also a Markov basis. The following two sections give examples307

where we do not have simple corruptions (in one of these it does not even make sense to308

think of corruptions in the sense of model Mtα) and a Markov basis has greater cardinality309

than a lattice basis.310

4. Example: Sufficient Statistics311

Next we consider the problem of modeling data from a closed population when sufficient312

statistics from one or more models are provided in place of the raw data. The raw data313

may not be available for a variety of reasons, e.g. privacy concerns. Here we assume that314

the population is closed and that we have the sufficient statistics associated with three315

commonly used models Mt, Mb and Mh (Otis et al. 1978). From model Mh we have the316

statistics f1, . . . , fK , where fj is the number of individuals who were caught j times from a317

total of K sampling occasions; from model Mt we have the statistics n1, . . . , nK , where nj318

is the number of individuals captured in the jth sample; and from model Mb we have the319

statistic M· =
∑t

j=1Mj, with Mj the number of marked individuals in the population in320

sample j. Note that we do not include the other sufficient statistics for model Mt and Mb321

noted by Otis et al. (1978) as they are deterministic functions of f1, . . . , fK .322

All of these statistics are linear functions of the data which means that this problem can323

be expressed using the linear constraint in (1). In this example, x represents the vector of324

counts for the 2K−1 true histories; y represents the vector of counts for the 2K+1 sufficient325



Connecting the Latent Multinomial 15

statistics; and the configuration matrix, A, is a (2K + 1)× (2K − 1) matrix. Details of how326

to find A along with an example for a study with K = 4 occasions are provided in the327

supplementary materials.328

Here we explore this scenario using multi-list data from a South Auckland, New Zealand,329

diabetes study from the Ph.D. research of Huakau (2001) and included in the Ph.D. research330

of Sutherland (2003). We ignore the potential errors in matching individuals between lists and331

assume that each individual is correctly matched (see Lee (2002) for how such errors could332

also be accounted for using the linear constraint (1)). There are K = 4 lists: general prac-333

titioners records (G), pharmacy records (P), outpatient records (O) and inpatient discharge334

records (D) that we assume are ordered as written. We use the data for males and reduce the335

full data (which is available in Sutherland 2003) to the statistics: n = (nG, nP , nO, nD)′ =336

(629, 622, 6279, 1623)′, f = (f1, f2, f3, f4)
′ = (6030, 1312, 161, 4)′ and M· = 8680 to give337

y = (6030, 1312, 161, 4, 629, 622, 6279, 1623, 8680)′.338

As well as y being sufficient for models Mt, Mh and Mb, it is also sufficient for the two-factor339

quasi-symmetric version of model Mth that is induced by a Rasch model (see Agresti 1994,340

for details of this model).341

The vector x is indexed by ω = (ωG, ωP , ωO, ωD), where ωj = 1 denotes inclusion on list342

j with ωj = 0 otherwise, so that x1101 is the number of individuals on lists G, P and D and343

not on list O. Our focus here is to attempt to make inference about x1000, the number of344

individuals who appear only in list G. We may also wish to fit a model to x for which y345

are not sufficient statistics. By definition, the resulting model would be nonidentifiable, but346

this does not necessarily mean that there is no information about parameters of this model,347

including the abundance N . The latent multinomial model can be used in either of these348

situations.349
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A lattice basis found using the Hermite normal form is350

x0001 x0010 x0011 x0100 x0101 x0110 x0111 x1000 x1001 x1010 x1011 x1100 x1101 x1110 x1111

LB1 0 0 0 0 0 0 0 0 −1 0 1 1 0 −1 0

LB2 0 0 0 0 0 0 0 0 −1 1 0 0 1 −1 0

LB3 0 −1 1 0 0 0 0 1 −1 0 0 0 0 0 0

LB4 1 −2 0 1 0 0 0 0 0 0 1 0 −2 1 0

LB5 1 −2 0 0 1 0 0 1 −1 0 1 0 −2 1 0

LB6 1 −2 0 0 0 1 0 1 −1 0 1 0 −1 0 0

LB7 1 −2 0 0 0 0 1 1 0 0 0 0 −2 1 0

351

Using the seven moves LB1 – LB7 in the algorithm in Figure 1 it is impossible to move352

between the two solutions x1 and x2353

x1 = (652, 4865, 794, 253, 18, 234, 62, 260, 26, 221, 67, 19, 0, 32, 4)′354

x2 = (684, 4901, 694, 253, 31, 154, 161, 192, 49, 365, 0, 19, 0, 0, 4)′ .355

356

If we are currently at x2, it is clear that all moves (except LB3) will lead to at least one357

negative cell count and will be automatically rejected. The vector LB3 can be used to update358

x2, but we are unable to get to x1 using LB3 alone. Again, we have at least two sets of359

elements in the fiber that we can move within, but are unable to move between.360

A Markov basis for this problem can be constructed in 4ti2 and is made up of the 16361

elements given in the supplementary materials. Since (i) 4ti2 finds a minimal Markov basis,362

and (ii) the cardinality of the Markov basis is larger than that of a lattice basis, we can be363

certain that a lattice basis can never be a Markov basis for this problem. Even though it is364

likely possible to construct another lattice basis that can move between x1 and x2 there will365

be either (i) another two elements in the fiber that are not connected, or (ii) another two366

elements in the fiber for a different y that we cannot move between with such a lattice basis.367

Here we fit model Mt and run the algorithm in Figure 1 with both the Markov basis given368

in the supplementary materials and the lattice basis specified above (details of the model are369

given in the supplementary materials). We make use of the factorization theorem (e.g, see370

Casella and Berger 2002, pg. 276) that states that a model f(x|θ) with sufficient statistics371
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y can be expressed as372

f(x|θ) = g(x|y)h(y|θ).373

A practical implication is that only g(x|y) is required if interest is in a function of x such as374

x1000, and the parameters θ = (N, p1, . . . , pK) need not be specified. A related implication is375

that if we do choose to update θ the resulting chains will converge to the correct posterior376

[θ|y] even if we (i) do not update x, or (ii) update x using a set of moves that is unable to377

connect the fiber, such as the lattice basis above; provided we specify an appropriate MCMC378

sampler for θ.379

Using the lattice basis and starting at x2 the resulting distributions for x1000 are qualita-380

tively different from the posterior distribution found using the Markov basis even though the381

individual chains appear to have converged to the stationary distribution (Figure 4). The382

true value of x1000 = 260 has some posterior mass when using a Markov basis (despite being383

in the tail). If we were to believe the results when using the lattice basis x1000 = 260 is so384

far in the tail, we would conclude it has negligible posterior mass.385

[Figure 4 about here.]386

5. Example: Band Misreading in Mark-Resight387

As a final example we consider a mark-resight model which allows for the possibility that388

individuals are misidentified when resighted in the field. Imagine that there are K1 distinct389

occasions, on which researchers capture a number of unmarked individuals, mark them, and390

release them back into the population. Along with that are a series of K2 resighting occasions,391

on which the researchers conduct visual surveys to identify previously marked individuals.392

Data from the experiment consist of the observed resighting histories for each individual. If393

there were no errors then standard mark-resight models could be used to estimate survival394

or movement rates (e.g. Hestbeck et al. 1991); or abundance (e.g. McClintock et al. 2006).395
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Suppose now that individuals may be misidentified when they are resighted. In direct con-396

trast to model Mtα, which assumes that errors are unique and never match other individuals,397

we assume that errors may be repeated and always match the identity of previously marked398

individuals. The justification for this assumption is that the available set of marks is known on399

each occasion when individuals are identified by man-made marks instead of natural markers400

(e.g., genotypes or photo-id). Erroneous sightings of marks which have not been released can401

then be identified and removed from the data prior to the analysis. The only time an error402

cannot be detected and discarded is when one previously marked individual is misidentified403

as another previously marked individual. We note that removal of erroneous sightings is only404

justified when estimating survival. Removing erronous sightings when including unmarked405

individuals would lead to biased estimators of abundance (McClintock et al. 2014).406

For the remainder of the section, we assume that the capture and resighting occasions407

occur simultaneously so that K = K1 = K2. The true capture histories for each individual408

can now be constructed in terms of four possible events. On each occasion, individual i may409

be:410

• not captured or resighted (event 0),411

• captured or resighted and correctly identified (event 1), or412

• resighted and incorrectly identified (event 2).413

Further to this, another individual may be resighted and incorrectly identified as individual i414

(event 3). Events 2 and 3 represent false negative and false positive resightings. For example,415

the history 123 for individual i would indicate that i was captured and marked on the first416

occasion, was resighted and misidentified on the second occasion, and that another individual417

was resighted and identified as i on the third occasion of a study with K = 3 occasions. To418

simplify the example, we assume that individuals cannot be misidentified when they are first419

captured and that multiple events involving the same individual cannot occur on a single420
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occasion (e.g., it is not possible to resight i and incorrectly identify another individual as421

i on the same occasion). This assumption may be unrealistic in some situations and was422

made to make the approach tractable. Developing methodology to relax this assumption is423

ongoing research.424

For an experiment with K occasions, the model has (4K − 1)/3 possible true histories and425

the usual 2K − 1 observable histories. Further to this, there are K − 1 extra constraints that426

equate the number of false negatives and false positives (2s and 3s) on occasions 2 through427

K. As a result, A has dimension (2K + K − 2) × (4K − 1)/3 and a basis for kerZ(A) has428

(4K − 1)/3− (2K +K − 2) elements.429

To make this more concrete, we consider the specific case of an experiment comprising430

K = 3 occasions. In this case, there are (43 − 1)/3 = 21 possible true histories, 23 − 1 = 7431

observable histories, and 3 − 1 = 2 extra constraints on the number of false positive and432

negative resightings (2s and 3s) on occasions 2 and 3. Details of how to construct A along433

with x and y for a study with K = 3 capture occasions are provided in the supplementary434

materials. In this case, a basis for kerZ(A) has 12 elements and the specific lattice basis435

obtained using the Hermite normal form is provided in the supplementary materials, along436

with the Markov basis, computed using 4ti2, that has 63 elements.437

To illustrate the problems that can occur with this model we first consider the analysis of

a single (fake) data set. Suppose that each observable history is recorded one time so that

y = (1, 1, 1, 1, 1, 1, 1).

An exhaustive search confirms that the fiber defined by y contains exactly 120 unique438

elements. However, the lattice basis given in the supplementary materials does not connect439

all of the elements in the fiber. Instead, the lattice basis divides the fiber into two distinct440

pieces including a large set of 87 connected elements; and a further set of 33 isolated elements441

which connect to nothing else. As a result, the distribution of the sample generated by the442
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algorithm in Figure 1 using the elements of the lattice basis in the supplementary materials443

as moves will depend on the starting point.444

To show this, we have investigated the output from the algorithm in Figure 1 when using445

a lattice basis as our set of moves. We have chosen a starting point that lies in the largest446

part of the fiber and connects with 86 other elements:447

x1 = (1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)′.448

Assuming a multinomial distribution for [x|θ] is not appropriate to account for the band449

misreading process and specification of a more complex [x|θ] is ongoing research. As our450

goal is to show that a lattice basis is unable to connect the fiber, we simplify the model by451

setting [x|θ] ∝ 1. A valid sampler should then sample uniformly from the 120 elements in452

the fiber. For comparison, we have also run a chain using the full Markov basis starting at453

x1. As expected, the first chain visits 87 unique solutions and the second visits all 120. To454

visualize the impact this can have on inference, Figure 5 compares the distributions of the455

number of errors in the solutions identified by each chain. Using the lattice basis, the first456

chain oversamples the solutions with too few errors, placing too much mass on solutions with457

one or two errors and not enough on solutions with three, four, or five errors. In comparison,458

the distribution generated using the full Markov basis matches the true distribution of the459

number of errors in the 120 elements almost exactly.460

[Figure 5 about here.]461

6. Discussion462

Here we have presented examples of capture-recapture models that show the importance463

of using a Markov basis when sampling from a linearly constrained vector of counts. In464

particular, we have demonstrated the danger of using elements of a lattice basis as one-at-a-465

time moves in an algorithm as in Figure 1. In many situations a set referred to as a Markov466
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basis is needed to ensure we can move between various elements of the fiber without passing467

through invalid (negative) counts. Even when a Markov basis is a lattice basis, we must take468

care because not every lattice basis is a Markov basis.469

For a given matrix A the need for a Markov basis over a simpler lattice basis depends on470

the lattice basis chosen, as well as the data observed. If we consider the lattice basis for the471

3× 3 contingency table in section 2, difficulties arose because our data had a row sum of 0.472

A related issue is that even when a lattice basis is unable to connect the fiber, it may still473

be able to connect nearly all elements in the fiber. In such a case, using a lattice basis may474

lead to a distribution that is an acceptable approximation of the true posterior distribution.475

This is especially the case if the elements of the fiber that are not connected to the initial476

value are in areas of low probability in the model [x|θ]. This can be seen in the example from477

Section 4: using the lattice basis and starting at the second starting value (Figure 2; right478

panel) results in an estimated posterior density that is practically indistinguishable from the479

true posterior distribution (Figure 4). However, there is no guarantee that any given lattice480

basis will provide a good approximation to the fiber. It is possible that even with multiple481

starting values we may choose values that only connect a small proportion of the fiber.482

One important aspect that we have only briefly mentioned is the difficulty in constructing483

Markov bases. For the purposes of this manuscript we have overcome this difficulty through484

(i) analytical results, or (ii) the use of the software package 4ti2 (Hemmecke et al. 2013).485

While the latter is possible for the examples we explored, it is unable to evaluate a Markov486

basis for some capture-recapture examples with a moderate to large number of sampling487

occasions. For example, 4ti2 was unable to compute a Markov basis (on the lead authors488

work machine) for the band read error model in section 5 for K > 4. If we were to use 4ti2489

for model Mtα (ignoring the theorem presented in section 3), 4ti2 was unable to compute490

a Markov basis for K > 5. The implication of this is that for an algorithm in the spirit of491
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Figure 1 to be implemented for problems not involving simple corruptions, methodological492

work is likely to be necessary to ensure a potential set of moves is a Markov basis.493

Several alternative algorithms and methods have been proposed for sampling from the fiber494

that avoid the calculation of a full Markov basis. We anticipate that such approaches may495

be useful for a range of capture-recapture examples. These include independent sampling496

of elements of the fiber (e.g., see Chen et al. 2005), extending the algorithm to allow497

limited travel through vectors x that contain negative values while using a set of moves498

that is not guaranteed to connect the fiber (e.g., see Bunea and Besag 2000) and approaches499

that dynamically find a Markov basis as the algorithm runs (e.g., see Dobra 2012). While500

promising, we expect these approaches will require adapting to the particular challenges501

faced in problems involving misidentification in capture-recapture data.502
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1: Initialize x0 so that y = Ax0

2: for i = 1 : n do
3: Sample k ∈ {1, 2, . . . ,m} with equal probability
4: Sample c ∈ {−1, 1} with equal probability
5: Set xcand = xi−1 + cak
6: Calculate the metropolis acceptance probability: r = min

(
1, [xcand|θ]

[xi−1|θ]

)
7: Accept xcand with probability r (if accepted xi = xcand; otherwise xi = xi−1)
8: end for

Figure 1. Algorithm for updating the latent counts x. The value n is the number of
iterations in the algorithm and the vectors B = {a1,a2, . . . ,am} are a subset of the kernel
of A.
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Posterior density: model =Mtα, chain 1

550 600 650

Posterior density: model = SS, chain 1

200 220 240 260 280

Posterior density: model =Mtα, chain 2

550 600 650

Posterior density: model = SS, chain 2

200 220 240 260 280

Figure 2. Estimated posterior densities of a quantity of interest for model Mtα (left panel)
and a multi-list model where summary statistics are presented in place of full data (SS; right
panel). Within each model, the resulting density estimates are plotted separately from the
output of two parallel MCMC algorithms (for each model) with different starting values.
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Posterior density for N (Markov basis)

N

540 560 580 600 620 640 660

Posterior density for N (lattice basis)

N
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Figure 3. Histograms of the estimated posterior density of N |y when using the Markov
basis from (5) (top) and the lattice basis from (6) (bottom) when starting from x1.
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Posterior density for x1000 (Markov basis)

x1000

200 220 240 260 280

Posterior density for x1000 (lattice basis)

x1000

200 220 240 260 280

Figure 4. Posterior densities of x1000 when using the Markov basis from the supplementary
materials (top) and the lattice basis specified in section 4 (bottom) when starting at x2.
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Figure 5. Distributions of the number of errors in the solutions sampled given the data
y. The top histogram illustrates the distribution generated using the lattice basis with the
starting value x1. The bottom plot illustrates the distribution obtained using the full Markov
basis with the same starting value. In each plot, the gray bars represent the distribution of
the number of errors while the dashed bars represent the true distribution over all 120 unique
solutions.


