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Abstract

1. Capture-recapture is a widely-used method in ecology for estimating the abundance or de-

mographic parameters of wildlife populations. Misidentification of animals is a common

problem for many capture-recapture experiments. Considerably misleading inference may be

obtained when traditional models are used for capture-recapture data with misidentification.

2. One proposed model for modeling misidentification is the so-called band-read error model,

which assumes that it is possible to identify one marked individual as another on each capture

occasion. Currently, fitting this model relies primarily on a Bayesian Markov chain Monte

Carlo approach, while maximum likelihood is difficult because there is not a computationally

efficient likelihood function available. The Bayesian method is exact but requires expert

implementation and considerable computation time.

3. In this paper, we propose an approximate model for modeling misidentification and then

develop a fast maximum-likelihood approach for the approximate model using likelihood

constructed by the saddlepoint approximation method. Compared to the Bayesian approach,

the proposed approximate method yields similarly reliable estimation results but is much

faster and easier to implement.

4. We demonstrate the promising performance of our proposed method by simulation and by

comparisons with the Bayesian inference under the original model. We apply the method to

analyze capture-recapture data from a population of Northern Dusky Salamanders (Desmog-

nathus fuscus) collected in North Carolina, USA.

Keywords: Band-read error model, Capture-recapture, Latent multinomial model, Misidentifica-

tion, Saddlepoint approximation, Salamander
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Introduction

When applying conventional capture-recapture methods to estimate demographic parameters of

animal populations, one may run into problems if misidentification occurs. Misidentification of

animals is widespread in capture-recapture experiments, especially when individual identification

is accomplished by recognizing natural features of animals through, for example, DNA samples

(e.g., Wright et al., 2009) and photographs (e.g., Morrison et al., 2011), or by using some non-

natural marks such as visible implant elastomer tags (e.g., Curtis, 2006). It has been shown that

even for a low rate of misidentification inferences on the parameters of interest can be considerably

misleading under capture-recapture models that ignore misidentification (e.g., Bonner et al., 2016;

Vale et al., 2014; Link et al., 2010).

Link et al. (2010) proposed model Mt,α for modeling misidentification. Key assumptions of

model Mt,α include that a specific identification error never occurs twice, and that an individual

is never misidentified as another captured individual. These assumptions simplify the model, but

might be questionable for many data sets in practice (Link et al., 2010). Bonner et al. (2016)

further investigated the problem of misidentification under a different model, termed as the band-

read error (BRE) model, assuming that identification errors cause one individual to be misidentified

as another marked individual. Thus, choosing appropriate models for misidentification in practice

depends on whether identification errors tend to match existing individuals or create new identities.

Both model Mt,α and the BRE model fall into a more general class of hierarchical models

that can be described using Y = AX, where observed data Y are linearly related to a latent

(unobservable) vector X by a known non-invertible matrix A. The latent vector X, a vector

of counts of true capture histories for our misidentification problem, is assumed to arise from

a probability distribution with unknown parameters θ. The distribution may or may not have

probability mass functions in closed forms. For example, X follows a multinomial distribution for

model Mt,α, while we do not know exactly the distribution of X for the BRE model (Bonner et al.,
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2016). We wish to estimate the parameters θ from the data Y . A simple and immediate likelihood

function here is f (y|θ) =
∑
x∈A f (x|θ), whereA = {x : Ax = y}. However, it is computationally

infeasible to use this likelihood for inference in practice because there are excessively many elements

in set A.

To fit modelMt,α, Link et al. (2010) proposed a Bayesian Markov chain Monte Carlo (MCMC)

method that aims to sample from the joint posterior distribution of x and θ instead of specifying

set A. Schofield & Bonner (2015) showed that the MCMC algorithm of Link et al. (2010) cannot be

employed to obtain inference for the BRE model because it may produce non-irreducible Markov

chains. Bonner et al. (2016) extended the more general MCMC algorithm of Schofield & Bonner

(2015) to deal with capture-recapture models such as the BRE model with more complicated

patterns of identification errors than model Mt,α.These Bayesian MCMC algorithms are general,

but require considerable computation time, especially for fitting the complicated BRE model. For

one typical data set with four capture occasions, fitting time can be as long as 24 hours on a 2.3

GHz laptop. This is rather slow because sampling from the full conditional distribution [x|y,θ] is

difficult in this context (Bonner et al., 2016; Schofield & Bonner, 2015).

Zhang et al. (2019) proposed a much faster maximum-likelihood approach based on the

saddlepoint approximation method (Daniels, 1954), and demonstrated the promising performance

of the method under a general class of latent multinomial models (LMMs), including model Mt,α as

a specific case. Key to the method of Zhang et al. (2019) is finding the moment generating function

ofX, which is straightforward whenX follows multinomial or many other known distributions such

as multivariate Poisson. For the BRE model, the vector X follows a very complicated distribution

whose moment generating function cannot be obtained easily. Thus it is not trivial to implement

the saddlepoint method of Zhang et al. (2019) to the BRE model.

Motivated by the promising efficiency of the method of Zhang et al. (2019), we show in

this paper how the saddlepoint approximation method can be implemented for the BRE model.

This paper is organized as follows. We first introduce the CJS/BRE model for open-population
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capture-recapture data with misidentification. Then we propose a product-multinomial model to

approximate the distribution of X under the CJS/BRE model so that the saddlepoint approxima-

tion can be applied. In the following sections, we describe the saddlepoint method and methods for

variance estimation. We assess the performance of the proposed method by simulation. Compared

with the Bayesian approach of Bonner et al. (2016), the saddlepoint method is much faster. We

illustrate the proposed method using data from a study of Northern Dusky Salamanders (Desmog-

nathus fuscus) conducted in North Carolina, USA.

Materials and Methods

CJS/BRE model

Models accounting for identification errors in capture-recapture generally consider the events in

two stages: the first describing the dynamics of population and the observation process, and the

second considering the identification of individuals to construct capture histories. For example,

model Mt,α combines the closed population model with time-dependent capture probabilities of

Otis et al. (1978) with the alpha error process in which individuals are correctly identified with

probability α each time they are captured and every error leads to the apparent observation of

a new individual that is captured exactly one time. Following Bonner et al. (2016), we consider

the so-called CJS/BRE model which combines the dynamic and the observation process of the

Cormack-Jolly-Seber (CJS) model (Cormack, 1964; Jolly, 1965; Seber, 1965) and the error process

of the BRE model.

We first consider population dynamics under the CJS model. The set of parameters for the

CJS model with T capture occasions includes φ = (φ1, . . . , φT−1) and p = (p2, . . . , pT ), where

φt denotes the probability of each individual surviving to occasion t + 1, and pt denotes the

probability of each individual being captured on occasion t, given that the individual is alive on

occasion t. The CJS model assumes that all captured individuals are identified without error,
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and that captures of different individuals or the same individual on different occasions are all

independent. Each individual has two possible outcomes on each capture occasion: non-capture

(code 0) and capture (code 1). For example, an individual has capture history 1001 if the individual

is captured on occasions 1 and 4 while not captured on occasions 2 and 3. It is straightforward

that for a T -occasion study, there are 2T possible capture histories. Here we exclude the null

history and the history with a single capture on the last occasion, which do not contribute to

the likelihood of the CJS model. It follows that we have I = 2T − 2 capture histories, denoted

by ξi = (ξi1, . . . , ξiT ) , i = 1, . . . , I. We call these histories latent capture histories, each of which

represents the true encounter records of an individual without misidentification.

Next we consider identification errors under the BRE model. Key assumptions of the BRE

model include: (1) all individuals are correctly identified when they are first captured and marked,

(2) individuals are correctly identified with probability α on subsequent recaptures, (3) identifi-

cation errors cause an individual recaptured on one occasion to be identified as another marked

individual that is not resighted on the same occasion, and (4) one individual can only be involved

in one event on each occasion. Given these assumptions, there are four possible events for each

marked individual on each occasion:

• 0: it is not captured;

• 1: it is captured and correctly identified;

• 2: it is captured but misidentified as another marked individual;

• 3: it is not captured but another captured individual is misidentified as it.

For an experiment with T capture occasions total of 4T histories can be constructed from these four

events. We call these histories latent error histories, which describe an individual’s true encounter

records as well as misidentification. We first exclude the four histories with event 0 only for the

first T − 1 occasions, because individuals captured only on the final occasion do not contribute

likelihood of the CJS model. Also, the BRE model assumes that all individuals captured for the
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first time are correctly identified, so we only need consider histories whose first non-zero entry

is 1. As a result, we only consider J =
(
4T − 4

)
/3 latent error histories which we denote by

vj = (vj1, . . . , vjT ) for j = 1, . . . , J . The counts of these histories constitute the latent vector X

in the CJS/BRE model. The vector X is not observable because any latent error history with

misidentification (i.e. event 2 or 3) cannot be observed directly, and will generate one observable

history instead.

Observable histories for the CJS/BRE model belong to the same set as the latent capture

histories. We denote the observable histories by ωi = (ωi1, . . . , ωiT ) for i = 1, . . . , I. The counts of

these histories constitute an observed data vector Y1.

Finally we discuss the relationships between the three sorts of histories defined above. As an

example, we consider an individual with latent capture history 1010. This individual would have

a latent error history 1023 if it is misidentified as another individual on occasion 3 and another

individual is misidentified as it on occasion 4. The latent error history 1023 will be observed as

1001. According to the relationship between latent error histories and observable histories, an

I × J matrix A1 can be constructed such that Y1 = A1X. More specifically,

A1ij =


1, if ωit = I {vjt = 1}+ I {vjt = 3} for all t = 1, . . . , T,

0, otherwise,

where I {·} denotes the usual indicator function. Assumption (3) of the BRE model implies that

the number of events 2 and 3 on occasion t must be the same for t = 2, . . . , T . Thus we can

construct a (T − 1)× J matrix A2 such that 0 = A2X, where

A2tj =


−1, if vjt+1 = 2,

1, if vjt+1 = 3,

0, otherwise.
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Combining the two equations above, we get Y = AX, where A =
(
A>1 ,A

>
2

)>
and Y =(

Y >1 ,0
>)>. The probability distribution of the latent vector X (see Bonner et al., 2016, for

details) is considerably complicated, making it very difficult to compute the probability mass

function of Y explicitly and thus the likelihood for the CJS/BRE model.

Approximate model for X

Since the BRE model requires the number of events 2 and 3 to be identical on each occasion,

the vector X satisfies A2X = 0. For this reason, the vector X under the CJS/BRE model

does not follow a product-multinomial distribution as the standard CJS model. In order to ap-

ply the saddlepoint method of Zhang et al. (2019), we approximate the distribution of X by a

product-multinomial model and then use a product-LMM to approximate the likelihood of the

CJS/BRE model. To derive the approximate product-multinomial distribution, we need to find

the probabilities assigned to each cell of X.

We first illustrate the relationship between latent capture and error histories, which is key

to finding the cell probabilities of X. Let πj (or πvj) denote the probability of latent error history

vj, and let βi (or βξi) denote the probability of latent capture history ξi, conditional on first

capture. Since latent capture histories do not incorporate identification errors, we can readily

obtain probabilities β = (β1, . . . , βI) in terms of φ and p under the standard CJS model. For

example, the probability of latent capture history 101 is β101 = φ1 (1− p2)φ2p3. After taking into

account identification errors, one latent capture history may lead to a set of several possible latent

error histories. For convenience, the events 0 and 1 mentioned below are these appearing after

the leading event 1 of a latent capture or error history. Event 0 in a latent capture history may

generate event 0 or 3 in a resulting latent error history. Similarly, event 1 may generate event 1 or

2. For example, the history 101 may produce latent error histories 101, 102, 131, or 132. We define

a set of derived parameters λt, t = 2, . . . , T to denote the probabilities that event 0 on occasion

t in a latent capture history leads to event 3 in a latent error history. These parameters can be
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Table 1: An example of computing the probabilities of latent error histories for the CJS/BRE
model with T = 2 capture occasions.

Latent capture history βi Latent error history πj

10 β1 = 1− φ1p2
10 π1 = β1 (1− λ2)
13 π2 = β1λ2

11 β2 = φ1p2
11 π3 = β2α
12 π4 = β2 (1− α)

expressed in terms of model parameters later. Recall that α denotes the probability that event 1

on any occasion in a latent capture history leads to event 1 in a latent error history.

Using the notation defined above, we assign a probability to each of the J latent error

histories. Suppose ξi is the corresponding latent capture history of latent error history vj. It

follows that

πj = βi

T∏
t=t0+1

[
(1− λt)I{vjt=0} αI{vjt=1} (1− α)I{vjt=2} λ

I{vjt=3}
t

]
,

where t0 is the occasion on which the first event 1 of the history vj appears. Then the vector

π = (π1, . . . , πJ)> can be expressed in terms of β, α, and λ = (λ2, . . . , λT ), for example, π102 =

β101 (1− λ2) (1− α).

We now consider how to express the derived parameters λ in terms of model parameters. For

convenience, we rewrite the vector X as X =
(
X>1 , . . . ,X

>
T−1
)>

, where Xt is a vector of counts

of all latent error histories whose first event 1 appears on occasion t. Accordingly, we write π as

π =
(
π>1 , . . . ,π

>
T−1
)>

, where πt contains probabilities of latent error histories whose counts are

in Xt. Let Nt denote the number of individuals that are first captured and marked on occasion

t = 1, . . . , T − 1. It follows that the vector of expected counts of all latent error histories is given

by X∗ =
(
N1π

>
1 , . . . , NT−1π

>
T−1
)>

. The CJS/BRE model requires the number of events 2 and 3

on each occasion to be the same, thus the expected count of events 2 and 3 on each occasion must

be the same. Then the vector X∗ satisfies the following system of T − 1 linear equations:

A2X
∗ = 0,
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from which we can express λ in terms of α, β, and N = (N1, . . . , NT−1). Consequently, we can

express π in terms of parameters α,φ,p, and N , because β is a function of φ and p. We illustrate

this procedure using an example with T = 2 as shown in Table 1. In the example, the system

A2X
∗ = 0 contains only one equation π2 = π4, which yields λ2 = (1− α) β2/β1.

Using the cell probabilities obtained, we approximate the distribution of each Xt by a multi-

nomial model:

Xt ∼ Multinomial (Nt;πt) , (1)

where πt = (πt1, . . . , πtHt)
> and Ht denotes the dimension of Xt. Then we obtain a product-

multinomial model and a product-LMM to approximate the distributions of the latent vector X

and the observed vector Y .

Saddlepoint approximation

The saddlepoint approximation was initially introduced to statistics by Daniels (1954), and has

become a powerful tool for approximating the probability distribution of a random variable from its

moment generating function (MGF). For details about the mathematical derivation of the method,

see Daniels (1954), Lugannani & Rice (1980), and Barndorff-Nielsen & Cox (1989). See Butler

(2007) for applications of the saddlepoint approximation in a wide range of fields.

The MGF of the variable X is defined as

MX (r) = E
{

exp
(
r>X

)}
,

where r takes values from RJ , enabling the expectation of exp
(
r>X

)
to be finite. Since the

components Xt of X are all independent, we have

MX (r) = MX1 (r1) · · ·MXT−1
(rT−1) ,

where r =
(
r>1 , . . . , r

>
T−1
)>

and MXt denotes the MGF of Xt. Let rt = (rt1, . . . , rtHt)
>. Note that
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Xt is assumed to follow the multinomial distribution (1), whose MGF is

MXt (rt) =

{
Ht∑
h=1

πth exp (rth)

}Nt

.

Following Zhang et al. (2019), the MGF of Y = AX can be obtained from that of X by

MY (s) = E
{

exp
(
s>Y

)}
= E

[
exp

{(
A>s

)>
X
}]

= MX

(
A>s

)
,

where s ∈ RL with L = I + T − 1 denoting the dimension of the variable Y . We denote by θ all

parameters underlying the distribution of Y . The saddlepoint approximation to the probability

mass function of Y is

f̃Y (y;θ) =
1

(2π)L/2 |K ′′Y (ŝ;θ) |1/2
exp

{
KY (ŝ;θ)− ŝ>y

}
, (2)

where KY (s;θ) = log {MY (s;θ)} denotes the cumulant generating function of Y , | · | denotes the

determinant, and ŝ = ŝ (y,θ) solves the saddlepoint equation

K ′Y (s;θ) = y, (3)

which usually does not have an analytic solution, and is treated as an optimization problem of

minimizing KY (s;θ)− s>y with respect to s.

Maximum likelihood estimates (MLEs) of the parameters θ are obtained by minimizing the

negative logarithm of the saddlepoint likelihood function (2). This minimization is not trivial

because associated with each evaluation of the saddlepoint likelihood is an inner optimization,

i.e., solving the saddlepoint equation (3). See the Supporting Information of Zhang et al. (2019)

for an efficient and accurate method of accomplishing this calculation using the R package TMB

(Kristensen et al., 2016).
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Here we have only introduced the basic idea of how to apply the saddlepoint method to our

model, while omitting further details about the implementation of the method which can be found

in Section 2.2 of Zhang et al. (2019). For example, we have to factorize the original likelihood

function of the model to enable the saddlepoint approximation method to work properly if Y1, a

subvector of Y , contains variables that have zero count. In addition, some tuning is needed for

the observed data vector and the matrix A1 if A1 is not of full row rank.

Variance estimation

Wald confidence intervals (CIs) for the model parameters can be readily constructed via the asymp-

totic distribution of the maximum likelihood estimator under the approximate model. Simulation

studies (results shown below) indicate that this approach is fast and works well in many situa-

tions, but may sometimes result in significantly inflated CIs. For example, for some data sets the

Wald CIs for some parameters are unreasonably too close to (0, 1) — the whole parameter space.

Compared with the corresponding credible intervals produced by the Bayesian method of Bonner

et al. (2016), those Wald CIs are not reliable because the variances for the estimators produced by

the approximate model are too large to be accurate. Alternatively, a more robust way for variance

estimation is to generate CIs via a parametric bootstrap method. The bootstrap method works

well in all situations we have tested but is slower than the Wald approach.

Results

Simulation study

We conducted simulations to assess the performance of the saddlepoint approximation method

applied to the proposed approximate model. We simulated data under the original CJS/BRE

model, and then fit the approximate model to the data. Note that estimating α from the data

is difficult because the data contain very limited information about the parameter (Link et al.,
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Table 2: Estimation results obtained using the saddlepoint approximation method based on sim-
ulations in two scenarios each with 100 replicates. We assume T = 4 capture occasions, α = 0.9,
and Nt = 100 for t = 1, . . . , T − 1.

Parameter True value Bias% (MLE > 0.9)% Wald CI Bootstrap CI
Width Coverage Width Coverage

φ1 0.70 −1.1 2.0 0.41 0.91 0.40 0.94
φ2 0.70 −2.0 4.0 0.43 0.96 0.40 0.96
p2 0.50 3.7 0.0 0.35 0.95 0.37 0.92
p3 0.50 0.5 0.0 0.31 0.98 0.32 0.95
φ3p4 0.35 1.5 0.0 0.16 0.95 0.16 0.96
φ1 0.90 −0.6 54.0 0.51 0.88 0.25 0.98
φ2 0.90 0.9 59.0 0.66 0.93 0.26 0.98
p2 0.50 1.8 0.0 0.26 0.93 0.26 0.94
p3 0.50 0.0 0.0 0.22 0.94 0.23 1.00
φ3p4 0.45 −1.1 0.0 0.15 0.91 0.15 0.97

2010; Bonner et al., 2016). One common way to handle this is to collect more data (Link et al.,

2010). In practice, information about α can be obtained using double observers or double tags

(Bonner et al., 2016). For convenience, we set α to be known in our simulations, which does not

make a difference to our main points in this paper. Estimating α together with other parameters

is possible but may lead to wider confidence intervals for the parameters. Similar to the CJS

model, parameters pT and φT−1 cannot be estimated separately under the CJS/BRE model with

T capture occasions, but we can estimate the product pTφT−1.

As examples, Table 2 presents estimation results from simulations in two scenarios each with

100 replicates. In both scenarios, fitting the approximate model to the simulated data produces

almost unbiased inference for all estimable parameters, with approximately nominal coverage of

95% (both Wald and bootstrap) CIs. Note that for the first simulation in Table 2, the differences

between the Wald and bootstrap CI widths for all the parameters are negligible, while for the second

the Wald CI widths for parameters φ1 and φ2 are at least two times as large as the bootstrap CI

widths. We found that this also happened for simulations in some other settings. Inspection of

numerous simulation results indicated this happened in cases where the MLE of one or more of
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Table 3: Comparisons of the saddlepoint approximation method and the Bayesian approach for
the CJS/ BRE model based on simulations in four scenarios each with 50 replicates. The true
parameter values for simulations are: φ1 = φ2 = φ3 = 0.7 and p2 = p3 = p4 = 0.6. Values before
and within the parentheses in the fourth and fifth columns represent results for the Wald and
bootstrap CIs respectively.

(Nt, α) Parameter Saddlepoint Bayesian
Bias% CI width CI coverage Bias% CI width CI coverage

(100, 0.8)

φ1 −0.6 0.51 (0.44) 0.90 (0.90) −2.1 0.41 0.96
φ2 0.5 0.49 (0.44) 0.92 (0.96) −0.9 0.40 0.98
p2 3.7 0.47 (0.44) 0.90 (0.92) 4.1 0.40 0.94
p3 2.1 0.40 (0.42) 1.00 (1.00) 4.6 0.37 0.96
φ3p4 −0.8 0.19 (0.19) 0.98 (1.00) −0.1 0.18 0.98

(200, 0.8)

φ1 1.1 0.35 (0.35) 0.92 (0.94) 0.0 0.32 0.90
φ2 −0.1 0.34 (0.34) 0.98 (0.96) 2.4 0.31 0.96
p2 −0.2 0.31 (0.33) 0.96 (0.94) 2.8 0.29 0.94
p3 1.2 0.29 (0.30) 1.00 (0.98) 0.5 0.26 0.98
φ3p4 −0.6 0.14 (0.14) 0.94 (0.94) −1.0 0.13 0.98

(100, 0.9)

φ1 −1.8 0.37 (0.36) 0.96 (0.92) −1.8 0.34 0.98
φ2 0.8 0.35 (0.36) 0.98 (0.98) 2.2 0.34 0.98
p2 2.0 0.35 (0.37) 1.00 (0.98) 2.4 0.34 1.00
p3 0.7 0.31 (0.32) 1.00 (0.96) 0.0 0.31 0.98
φ3p4 −1.2 0.16 (0.16) 0.96 (0.94) −2.3 0.16 0.98

(200, 0.9)

φ1 2.5 0.26 (0.27) 0.94 (0.94) 1.4 0.26 0.90
φ2 −0.8 0.24 (0.25) 0.94 (0.98) 1.4 0.26 0.96
p2 −1.4 0.25 (0.25) 0.92 (0.92) 0.1 0.24 0.98
p3 0.1 0.22 (0.23) 0.92 (0.96) −1.5 0.22 0.94
φ3p4 −0.3 0.12 (0.12) 0.98 (0.98) −3.0 0.11 0.90

the parameters was close to the upper boundary of the parameter space (say above 0.9). The

percentages of MLEs > 0.9 for φ1 and φ2 are 54% and 59% for the second simulation in Table 2,

while the percentages for the first simulation are 2% and 4%. Thus, the MLEs can be regarded

as an empirical indicator for us in practice to determine if the bootstrap method is needed for

variance estimation.

We also conducted simulations to investigate the influence of fitting the approximate model

on parameter estimation. For each simulated data set, we fit our approximate model using the

saddlepoint approximation method, and fit the original model using the Bayesian approach of
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Bonner et al. (2016). Then we compared estimation results from the two methods. Table 3 shows

four examples of such comparisons. We can see that both methods generate almost unbiased

inference with roughly nominal coverage of 95% confidence (credible) intervals for all estimable

parameters. The bootstrap and Wald CI widths are similar for these simulations because the

percentages of MLEs > 0.9 are low for all the parameters. The only concern for our proposed

method is that in some cases it might produce slightly wider CIs than the Bayesian approach does

under the exact model. One such example is the first simulation study shown in Table 3. We

find that the performance of the saddlepoint approximation depends on the value of parameter

α. Given that other parameters are fixed, the method works better for a larger value of α. For

example, the percentage differences between confidence (credible) interval widths obtained from

the two methods turn out to be less than 10% for all the parameters in the third simulation study

shown in Table 3 when α increases from 0.8 to 0.9. This point can be further illustrated by the

second and fourth simulation studies in Table 3. The performance of the approximate method

also depends on the components of N . More individuals captured on each occasion can enhance

the performance of the approximate method, which, for example, can be seen from the first and

second simulations in Table 3.

A key motivation of developing the approximate model in this paper is that computation

times using the saddlepoint approximation for the model can be substantially shorter. On average,

it cost less than one second on a 2.3 GHz laptop to fit the approximate model to one simulated

data set in the settings of Tables 3, provided that the Wald CIs were generated. It cost about

three minutes to generate bootstrap CIs from 1,000 replicates for one data set. In contrast, for the

same data set about 24 hours was needed using the Bayesian MCMC algorithm of Bonner et al.

(2016) under the original CJS/BRE model. This was rather slow because we set the length of the

chain to be one million to ensure the effective sample size was at least 1,000 for all parameters.
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Example: salamanders data

We consider data from a study of Northern Dusky Salamanders (Desmognathus fuscus) conducted

at Stephens Road Nature Preserve in Huntersville, North Carolina, USA (Price et al., 2012).

Salamanders were sampled twice per month within a 100m section of a stream using capture-

recapture methods from October 2005 to November 2010. Sampling methods included turning over

cover objects such as rocks and logs, searching leaf litter, and checking beneath coverboards along

the stream bank. Each captured individual was uniquely marked by subcutaneous injections of a

liquid polymer known as visible implant elastomer (Northwest Marine Technologies, Shaw Island,

WA). Visible implant elastomer is widely used and considered a reliable technique in capture-

recapture studies of amphibians (Marold, 2001; Bailey et al., 2004); however, some researchers have

noted that this technique occasionally results in misidentification of individuals. Misidentification

of individuals may occur if marks migrate from the injection area (Marold, 2001; Grant, 2008),

or if observers fail to see marks through heavily pigmented skin or misidentify the color of the

elastomer (Bailey, 2004; Heemeyer et al., 2007).

Price et al. (2012) investigated the effect of drought conditions on the temporary emigration

patterns and survival of salamanders using the monthly data. Here, we use yearly samples from

the study to illustrate the proposed method for capture-recapture data with misidentification. The

numbers of salamanders first captured and marked on occasions 1 to 5 (years 2005 − 2009) form

the vector N = (62, 377, 361, 244, 495). Within the study period 81% of these 1,539 salamanders

were captured once only, 18% twice and 1% three times or more. For those captured more than

once, 79% were recaptured in the year after they were marked and not seen again. Only 8% were

recaptured two or more years after they were marked. In the analysis of Price et al. (2012), no

misidentification was considered. However, there is some evidence of misidentification in the study;

for example one individual was captured in the first two years, not captured in the next three, and

then captured again. This is unusual because only 1.5% (19%×8%) of all the marked salamanders

were recaptured more than two years after they were initially marked.
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Figure 1: MLEs and 95% bootstrap confidence intervals (profile intervals for α = 1) of annual
survival probabilities for the salamanders data. When α = 1 we fit the exact CJS model using the
program MARK (White & Burnham, 1999) implemented via the R package RMark.

There is no direct information available for estimating the parameter α for this data set.

To explore the possible effects of misidentification in this example, we fit the approximate model

for different values of α and compare the resulting estimates of survival. Here we need to obtain

reliable CIs for the parameters by bootstrapping. Figure 1 shows estimation results for survival

probabilities. Regardless of the rate of misidentification, there is clear evidence of a decrease in

the survival probability based on these models. For all the seven values of α we have explored,

the results indicate that the survival probability decreased on average by 17.4% from year 2005

to year 2006, 55.9% from year 2006 to year 2007, and 21.4% from year 2007 to year 2008. It is

also obvious from the figure that misidentification has two significant effects on the estimation

of survival for the salamanders. First, a lower rate of misidentification (i.e., a larger value of α)

increases the estimates of the survival probabilities. The estimates of the survival probabilities

for α = 1 are between 1.5 and 2.4 times as large as those for α = 0.75. Second, a lower rate
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of misidentification may also decrease the CI widths for these parameters. This effect is more

significant for the initial survival probabilities φ1 and φ2. The CI widths for parameters φ1 and

φ2 for α = 1 are 0.60 and 0.71 times as large as those for α = 0.75. The CI widths for φ3 and φ4

remain almost the same for different values of α in this example. These results clearly indicate the

necessity of taking into account misidentification in analysis of capture-recapture data if animal

identification is error-prone. This observation coincides with the conclusions of previous authors

such as Link et al. (2010) and Bonner et al. (2016).

Discussion

In this paper, we have developed a fast approximate method for fitting open-population capture-

recapture data with misidentification under the CJS/BRE model. We have demonstrated the

promising performance of the proposed method empirically by simulation and by comparisons

with the Bayesian approach of Bonner et al. (2016). Based on the simulations, we have confidence

that the approximation method works well for parameter estimation when most components of N

are large (say 200 or above). In this case, we need not be concerned about whether α is large or not.

When it is not the case, α might be regarded as an indicator of the performance of the proposed

method. If α is large, the approximation method can still work well when N consists of small

counts. Otherwise quite wide credible intervals will be obtained even if we fit the CJS/BRE model

using the Bayesian method. Thus the approximate method works in most realistic situations.

We approximate the true distribution of the latent vectorX by a product-multinomial model,

which shares exactly the same mean vector as X but has a different variance-covariance matrix.

While losing some information about the exact distribution of X, this approximation enables the

application of the saddlepoint approximation method to the CJS/BRE model. Our simulations

show that misspecifying the variance-covariance matrix does not lead to obvious bias to the max-

imum likelihood estimators of the parameters. However, the Wald approach performs poorly for

variance estimation in some situations as shown in the simulation study. Thus, we recommend the
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more robust bootstrap method for variance estimation under the proposed approximate model. As

far as we can tell, the only drawback is that it is slower than the Wald approach, though it is still

much faster than the Bayesian method. Note that the computational speed can be easily improved,

since R code implementing the bootstrap method can be parallelized without much effort. If one

uses a computer with multiple cores or can get access to computer clusters, computation times

using our approximate method can be further reduced. This is particularly beneficial for fitting

data from capture-recapture studies with more capture occasions, for which finding MLEs is slower

because there are more parameters and the dimension of the optimization problem is higher.

Due to the salamanders data we are interested in, we consider the CJS model for population

dynamics and the BRE model for misidentification in this paper. It is evident that the BRE model

can be used with other capture-recapture models for open or closed populations such as model Mt,

which forms the basis of model Mt,α (Link et al., 2010). We believe that the approximate method

proposed here should still be applicable at least in cases where the capture-recapture model is

multinomial. However, one should check the performance of the method thoroughly by simulation

before putting it into use for real data analysis.
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