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Summary

1. Hair snares have become an established method for obtaining mark-recapture data for population

size estimation of Ursids and have recently been used to study other species including other

carnivores, small mammals, and ungulates. However, bias due to a behavioral response to

capture in the presence of missing data has only recently been recognized and no statistical

methodology exists to accommodate it. In a hair snare mark-recapture experiment, data

can be missing if animals encounter a hair snare without leaving a hair sample, poor quality

samples are not genotyped, a fraction of all samples collected are genotyped due to cost

considerations (subsampling), and/or not all genotyped hair samples provide an individual

identification. These are all common features of hair snare mark-recapture experiments.

2. Here, we present methodology that accounts for a behavioral response to capture in the presence

of missing data from 1) subsampling and 2) failure of hair samples to produce an individual

identification. Four subprocesses are modeled–animal capture, hair deposition, researcher

subsampling, and DNA amplification with key parameters estimated from functions of the

number of hair samples left by individuals at traps. We assess the properties of this method-

ology (bias and interval coverage) via simulation and then apply this methodology to a pre-

viously published data set.

3. Our methodology removes bias and provides nominal interval coverage of population size for

the simulation scenarios considered. In the example data set, we find that removing 75% of

the hair samples leads to a 40% lower estimate of population size. Our methodology corrects

about half of this bias and we identify a second source of bias that has not previously been

reported associated with differential trap visitation rates among individuals within trapping

occasions.

4. Our methodology will allow researchers to reliably estimate the size of a closed population in

the presence of a behavioral response to capture and missing data for a subset of missing

data scenarios. It also provides a framework for understanding this generally unrecognized

problem and for further extension to handle other missing data scenarios.
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1. INTRODUCTION

Mark-recapture experiments for many taxa increasingly rely on DNA samples for individual iden-

tification, with hair samples being one of the main sources of DNA. Identification from DNA in

hair samples has been used to study at least 22 species of carnivores (Kendall & McKelvey, 2008)

and these methods have recently been applied to small mammals (Henry & Russello, 2011) and

ungulates (Belant et al., 2007). For some taxa such as Ursids, DNA identification from hair samples

is the dominant method for mark-recapture studies and the resulting population size estimates are

used to inform the management of small, extinction-prone populations (e.g. Tredick & Vaughan,

2009; Frary et al., 2011). Given the prevalence of these methods and the importance of reliable

population size estimates, potential sources of bias in this methodology need to be understood and

where possible, accounted for by extending current models or modifying the experimental design.

Several sources of bias have been previously investigated (Roon et al., 2005; Dreher et al., 2009;

Laufenberg et al., 2013), but bias due to missing data in the presence of a behavioral response to

capture has gone largely unnoticed (but see Laufenberg et al., 2013). This is important because

behavioral responses to capture and missing data are both common in hair snare studies.

A behavioral response to capture in hair snare experiments has been documented (e.g. Tredick

et al., 2007; Royle et al., 2011) and is likely to occur in many hair snare sampling designs. Because

traps are novel, may be associated with humans, and may be uncomfortable to enter (e.g. barbed

wire), animals may be reluctant to enter them. To counter this, hair snares are usually baited with

either a food reward or a scent (Kendall & McKelvey, 2008) so that animals have an incentive

to enter the traps. If food rewards are used, animals may perceive the food reward as worth the

discomfort and novelty of entering a hair snare trap and become trap happy. Alternatively, they

may not perceive the food reward as worth the trouble and become trap shy. If scents are used,

animals may become trap shy after realizing there is no reward associated with the scent (Brian

Dreher pers. comm.).

The standard approach to modeling a behavioral response to capture in closed populations is

to use model Mb (Otis et al., 1978), which can provide unbiased population size estimates when

the magnitude of the behavioral response does not vary among individuals or across time and no

missing data are present (the likelihood for Mb can be found in Appendix A). The parameters of Mb

are N , the population size, p, the probability of first capture, and c, the probability of subsequent
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captures. The number of capture occasions is represented by t and ω is the matrix of capture

histories. Let Mj denote the number of marked individuals in the population on occasion j and mj

denote the number of marked individuals captured on occasion j. The sufficient statistics computed

from ω are M. =
∑t

j=1Mj , m. =
∑t

j=1mj and the total number of individuals captured in the

experiment, Mt+1.

In this paper, we consider two sources of missing data that may bias estimates of the size of a

closed population when there is a behavioral effect. First, a researcher may not genotype all hair

samples due to cost considerations. This practice is especially common in studies of black bears

(Ursus americanus), (Tredick et al., 2007; Settlage et al., 2008), in which hundreds or thousands

of hair samples may be collected and only a small proportion can be genotyped. Second, not all

genotyped samples will produce an individual identification. Common causes of sample failure

are poor quality samples and hair samples containing DNA from more than one individual (Waits

& Paetkau, 2005). A third source of missing data that we do not consider is that animals may

encounter a hair snare without leaving a hair sample. We also do not address genotyping errors

leading to incorrect individual identifications as proper lab protocol can minimize their prevalence

to negligible levels, at least in studies using multiple plucked hair samples to obtain DNA (Paetkau,

2003; Roon et al., 2005). We comment further on both of these issues in the Discussion.

Previous studies of the effects of missing data on estimates of population size have focused on

three particular sources of bias: 1) interactions between missing data and individual misidentifica-

tion due to errors in the DNA amplification process (Dreher et al., 2009), 2) reduced number of

samples leading to the selection of overly-simple models (Laufenberg et al., 2013), and 3) reduced

capture probabilities leading to poor estimator performance (Tredick et al., 2007). However, the ef-

fects of missing data in the presence of a behavioral response to capture have not been investigated

in detail (Laufenberg et al., 2013) and no methodology exists for obtaining reliable population size

point and interval estimates if this occurs.

In Appendix A we describe analytical methods to approximate the bias of N̂ from model Mb

when missing data are ignored. In general, failure to account for missing data will positively

bias N̂ if individuals display a trap happy response and negatively bias N̂ if individuals display a

trap shy response. In addition, the magnitude of the behavioral response (|p − c|) is necessarily

underestimated when data are missing. To see this, let pobs be the probability that a previously
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uncaptured individual is captured and identified and cobs be the probability that an individual is

recaptured and identified. If δ is the proportion of data that is not missing due to subsampling or

amplification failure then pobs = δp and cobs = δc. If p̂obs and ĉobs are unbiased estimates of pobs and

cobs then the estimate of the behavioral effect is |p̂obs− ĉobs| and E[|p̂obs− ĉobs|] = |δp− δc| < |p− c|

unless δ = 1. Note, the analytical methods in Appendix A cannot be used in practice as they

depend upon the unknown parameters.

Here, we present methodology that allows researchers to fit Mb in the presence of missing data

by explicitly modeling the hair sample deposition, subsampling, and DNA amplification processes.

We assess the properties of the methodology under different missing data scenarios via simulation

and compare the results to those obtained when naively fitting Mb. Then, we also apply the

methodology to data from a previous study of black bears which showed that subsampling decreased

N̂ to levels up to ∼ 38% below N̂ estimated from the complete data set. This study used Mb fit via

maximum likelihood which ignores missing data (Tredick et al., 2007). The population under study

was estimated to exhibit a trap shy response, which as we show in Appendix A, should produce

a negative bias in N̂ in the presence of missing data. Tredick et al. (2007) mis-attributed the

negative bias to poor estimator performance resulting from the low capture probabilities obtained

after subsampling. In this paper, we will use this example to demonstrate our methodology. Of

particular interest is whether the magnitude of the behavioral response in this experiment can fully

explain the observed bias in the estimate of population size, given the amount of missing data.

2. METHODS - MODEL DESCRIPTION

The model we developed can be separated into four processes–animal capture, hair deposition,

subsampling, and DNA amplification. We will discuss each in turn. A list of terms and definitions

can be found in Table 1 and the full model is depicted in Figure 1. Starting with the animal capture

process, we make three assumptions:

(1.1) Population closure

(1.2) Constant capture probability, p, and recapture probability, c across individuals and time

periods

(1.3) Capture events are independent
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(1.4) Individuals can be captured in at most 1 trap per occasion

Let ω be the matrix of unobserved capture histories with ωij being 1 if individual i was captured

on occasion j and 0 otherwise. According to the assumptions above, ωij ∼ Bern(qij) where qij = p

if an individual i has not been captured before occasion j and c otherwise. Assumption 1.2 is made

for convenience and can be relaxed with standard methods for modeling time effects and individual

heterogeneity (Otis et al., 1978) or by using individual covariates, if available. The hair deposition

process makes three assumptions:

(2.1) Hair samples are left in discrete units, such as all hairs left on one barb, and remain on the

barb until the researcher collects the sample

(2.2) Conditional on visiting a trap, animals leave hair samples according to a zero-truncated

Poisson distribution.

(2.3) The expected number of hair samples left conditional upon visiting a trap does not depend

on the individual, trap, or trapping occasion

Let S be the matrix containing the unobserved number of hair samples left by each individual

on each occasion. According to the assumptions above, conditional on visiting a trap, the number

of hair samples left at a trap for individual i captured at time j, Sij , follows a zero-truncated

Poisson distribution with parameter λ so that

P (Sij |ωij) =



λSij exp(−λ)
Sij !(1−exp(−λ)) ωij = 1, Sij > 0

0 ωij = 1, Sij = 0

0 ωij = 0, Sij > 0

1 ωij = 0, Sij = 0

(1)

The appropriateness of this distribution can be checked using goodness of fit tests (Best et al.,

2007) and other positive count distributions can be used if the zero-truncated Poisson is found to

be inappropriate. Note that the zero truncation implies that an individual necessarily leaves at

least one hair sample when it enters a trap. This assumption is required to ensure that the model

is identifiable. The subsampling process makes one assumption:
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(3.1) On each occasion, hair samples from all traps are pooled and a simple random sample is

retained with known probability δ

Let U be the matrix containing the number of hair samples retained for genetic analysis af-

ter subsampling for each individual on each occasion. According to the assumptions above, the

number of hair samples remaining in the subsample for individual i captured at time j, denoted

by Uij , are each distributed as a binomial random variable with size Sij and probability δ. Other

subsampling methods are possible and some alternatives are considered in the Discussion. The

DNA amplification process makes three assumptions:

(4.1) All samples produce individual identifications with a unknown probability α, which does not

vary by hair sample, individual or trapping occasion

(4.2) No false identifications occur (no allelic dropout; Taberlet (1996); or shadow effect; Mills

et al. (2000))

Let R be the matrix containing the number of positive identifications. According to the as-

sumptions above, Rij , the number of hair samples from individual i which are in the genotyped

subsample at time j are each distributed as a binomial random variable of size Uij with proba-

bility α. Under this model, both Sij and Uij are unobserved, while the observed data are Rij ,

S. = (S.1, . . . , S.t)
′, a vector of length t containing the number of hair samples collected on each oc-

casion, and U. = (U.1, . . . , U.t)
′, a vector of length t containing the number of hair samples collected

on each occasion that are retained in the subsample. Assumption 4.2 is made for convenience and

can be relaxed if necessary (e.g. Link et al., 2010).

We fit this model in a Bayesian framework using the complete data likelihood (CDL) and data

augmentation (Tanner & Wong, 1987). We used a custom built MCMC sampler in order to enforce

constraints imposed by S. and U. (see Appendix B for details). The data augmentation procedure

allowed for the estimation of the unknown multinomial index parameter, N , by factoring the

multinomial as the product of a binomial modeling the number of individuals in the population and a

multinomial modeling the capture history of each individual, both with fixed size (Royle & Dorazio,

2008). The observed capture histories were augmented with M−Mt+1 “pseudo-individuals” having

all zero capture histories, and individuals in the augmented population were included in the true

population with probability ψ. Latent indicator variables zi ∼ Bern(ψ) (i = 1, 2, ...,M) determined
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which individuals were in the population and the posterior distribution of N was approximated by

calculating N =
∑M

i=1 zi on each iteration. We used a Beta(0.001,1) prior for ψ, inducing the scale

prior on N which has been shown to avoid unacceptable behavior sometimes encountered with the

discrete uniform prior (Link, 2013). Priors for both p and c were Uniform(0,1). Two versions of the

model were considered–Mb2, which accounts for researcher subsampling, and Mb3, which accounts

for both researcher subsampling and failure of hair samples to produce an individual identification.

The CDL for the more general model (see Table 1 for notation review), Mb3, is

LMb3
(z,ω,S,U , p, c, λ, α|R,S.,U.) = P (S.,U.|S,U)P (R,U |S, α)P (z,ω,S|ψ, p, c, λ)

where:

P (z,ω,S|ψ, p, c, λ) =
M∏
i=1

ψzi(1− ψ)zi ·
M∏
i=1

t∏
j=1

q
ωij

ij (1− qij)1−ωijP (Sij |ωij)

models capture and sample deposition,

P (R,U |S, α) =
M∏
i=1

t∏
j=1

δUij (1− δ)Sij−UijαRij (1− α)Rij

models the processes of subsampling and genotyping failure, and

P (S.,U.|S,U) =
t∏

j=1

I

(
M∑
i=1

Sij = S·j and
M∑
i=1

Uij = U·j

)

ensures that the number of samples deposited and subsamples genotyped on each occasion match

the observed values. Here I(·) is the indicator function. The CDL for the reduced model, Mb2,

that accounts for missing data from the subsampling process only is the same as above after setting

α = 1.

3. SIMULATION STUDY

Simulations of closed populations of size 250 were conducted to assess the frequentist properties

of the methodology (bias and interval coverage) and to compare the performance to naively fitting
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Mb. In Simulation 1 we considered 18 scenarios in which data were missing only due to systematic

subsampling by researchers so that Mb2 was the correct model. Data were simulated from Mb2 with

different values of p, c, δ, and λ and then both Mb and Mb2 were fit to the data (see Table 2 for

specific parameter combinations). Of these 18 scenarios, 9 considered a trap-happy response and

9 considered a trap-shy response. The magnitude of behavioral response (|p− c|) was either 0.2 or

0.4 and 6 capture occasions were simulated.

In Simulation 2 we considered both subsampling and failure of hair samples to produce an

individual identification so that Mb3 was the correct model. We chose 6 scenarios to produce the

same level of missing data as the most extreme subsampling-only scenarios (δ = 0.5, λ = 1), but

with half of the missing data due to subsampling and half to genotyping failure, achieved by setting

δ =
√

0.5 and α =
√

0.5. In these scenarios, data were simulated from Mb3 and Mb3 was fit to

the data. We did not fit Mb in these scenarios because this replicates the results of the previous

simulation. If the data are randomly subsampled by two binomial processes, then the overall

missing data process is still binomial with p = δα = (
√

0.5)(
√

0.5) = 0.5 as in Simulation 1. For

all simulations, each scenario was repeated 100 times and the following summary statistics were

calculated for N : mean posterior mode, 95% highest posterior density (HPD) credible interval

coverage of the true parameter, mean 95% HPD credible interval width, and mean estimated

behavioral response.

3.1 Simulation 1

Naively fitting Mb in the presence of missing data and a behavioral response produced positively-

biased estimates of N in trap-happy scenarios and negatively-biased estimates of N in trap-shy

scenarios (Table 2). In trap-happy scenarios, bias ranged from +1% to +18% and in trap-shy

scenarios, bias ranged from -1% to -13%. For both trap response types, bias was greater when

capture and recapture probabilities were lower, when the behavioral response was larger, and when

λ was smaller. As the level of missing data increased or as λ decreased, credible interval coverage

decreased and credible interval width increased. The increase in credible interval width was greater

in trap-happy scenarios, leading to a smaller reduction in credible interval coverage than in the

trap-shy scenarios.

Model Mb2 substantially reduced bias: posterior modes for N were essentially unbiased for both
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trap-happy and trap-shy scenarios. Coverage of the 95% HPDs was close to nominal for both types

of trap response with the mean coverage probability across the 6 trap-happy scenarios being 0.957

and across the trap-shy scenarios being 0.965 (compared to 0.907 and 0.320, respectively for Mb).

In the trap-shy scenarios credible interval widths were wider than those for Mb on average. These

differences increased as the level of missing data increased and as λ decreased.

Estimates of the behavioral response were also negatively biased when naively fitting Mb. Bias

was greater when capture and recapture probabilities were higher, when the behavioral response

was larger, and when λ was smaller. Bias in missing data scenarios ranged from -16% to -41%.

Mb2 effectively removed bias with a mean bias across all scenarios of +0.4%.

3.2 Simulation 2

In Simulation 2, Mb3 estimates of N were effectively unbiased with near nominal credible interval

coverage (mean of 0.96 across all 6 scenarios see Table 2 for full results). As before, these differences

increased as the level of missing data increased and as λ decreased. Additionally, these differences

were larger for trap-happy scenarios. Model Mb3 largely removed bias in the behavioral response

with a mean bias of +2%.

4. EXAMPLE

We applied our methodology to a data set from a closed population black bear hair snare study

conducted on the Pocosin Lakes National Wildlife Refuge in Northeastern North Carolina (Tredick

et al., 2007) that was not originally subsampled. Details relevant to the current study will be

provided here–see Tredick et al. (2007) for a complete description of the study. Thirty-three baited

barbed-wire hair snare traps were checked over 8 capture occasions, yielding 85 unique individual

identifications. Of the 468 hair samples collected, 85% provided an individual identification. The

data were originally analyzed using CAPTURE (White, 1982) and evidence was found for individual

heterogeneity in capture probabilities, time effects, and a trap-shy behavioral response.

Using the subsampling method assumed by our model, we simulated the subsampling process at

four levels (δ = 1, 0.75, 0.50 and 0.25). Note, this approach is slightly different than used in Tredick

et al. (2007). We simulated subsampling before DNA amplification since researchers cannot know

ahead of time which samples will produce an individual identification while Tredick et al. (2007)
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simulated subsampling after DNA amplification. Before subsampling, hair samples from individuals

that were captured at multiple traps on the same occasion were combined by individual. At each

stage, we fit Mb and Mb3 and recorded the posterior mode and 95% HPD interval for N . The entire

process was repeated 100 times to accommodate variability in the subsampling process. Time effects

and individual heterogeneity were not considered. Therefore, our population size estimates for the

true population will be biased, but we are only interested in how estimates change with increasing

levels of missing data and these effects should not introduce bias as the level of missing data

increases. Coverage and relative bias were calculated using the “best estimate” of N for this data,

which was the estimate from Mb when δ = 1. We believed using the best estimate to calculate bias

and coverage will give reasonably accurate results since the 95% credible interval for N when no

data are missing is narrow (83-89).

As in the previous simulations, naively fitting Mb in the presence of missing data and a trap-

shy behavioral response to capture produced negatively-biased estimates of N (Table 3). Relative

bias from the best estimate increased from 7% to 40% as data were progressively subsampled

and credible interval coverage of the best estimate was reduced to 0.02 when δ=0.25. Model Mb3

performed substantially better than Mb, removing about half of the bias and increasing credible

interval coverage of the best estimate to 0.47 when δ=0.25. We explore possible reasons we could

not remove the majority of bias in Appendix C.

5. DISCUSSION

We have demonstrated analytically and through simulation that Mb produces biased estimates of

population size in the presence of missing data, showed how this bias is introduced, and provided

methodology to correct this bias in the presence of two sources of missing data and under one model

of subsampling. We also demonstrated that Mb underestimates the magnitude of the behavioral

response in the presence of missing data, making it less likely that a behavioral response will

be detected. We showed that our methodology provides essentially unbiased estimates of both

N and the behavioral response and near nominal frequentist interval coverage probabilities for

N in the range of sampling scenarios we considered when the model assumptions are satisfied.

We demonstrated that about 50% of the total negative bias observed in Tredick et al. (2007)

can be explained by a trap-shy behavioral response in the presence of missing data. We also
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identified a second source of bias that occurs in the presence of missing data – a specific form

of individual heterogeneity in capture probability (see Appendix C). Individual heterogeneity in

capture probability itself is not problematic in the presence of missing data (confirmed by simulation

results not presented here); however, if individuals with higher capture probabilities leave more

hair samples per occasion than those with lower capture probabilities, the latter will drop out of

the observed sample faster than the former, resulting in less observed heterogeneity and a mean

capture probability that is biased high. As a result, N̂ will be biased low even if individual

heterogeneity is modeled. This source of bias appeared to explain another 17.5 % of the total

negative bias in the Tredick et al. (2007) data. We suspect this pattern is caused by bears with

higher capture probabilities visiting more traps per occasion which has been documented elsewhere

(e.g. Van Manen et al., 2012).

We were unable to account for about 32.5% of the total negative bias relative to the best

estimate due to missing data in the Tredick et al. (2007) data set. The fact that the magnitude

of the behavioral response was not underestimated by Mb when missing data were present and

the behavioral response did not remain constant as the level of missing data were increased using

Mb3 suggests that Mb does not closely approximate the data generating process. It may be that

subsampling is interacting with other sources of bias in this data set or even that the original

observed behavioral response is largely explained by another source of bias. For example, closure

may have been violated and missing data may be interacting with Markovian movement on and off

the grid or with permanent emigration/immigration since this experiment was started during the

time of year subadult males are dispersing (see Kendall, 1999). Due to this uncertainty, both our

estimate and the original should be treated cautiously.

Our methodology was successful under the assumptions made regarding the hair sample sub-

sampling and DNA amplification processes, and further extensions can make this methodology

more widely applicable. First, our methodology could be extended to accommodate the correlation

between individual capture probabilities and the number of hair samples left upon capture using

the Poisson encounter model of Royle et al. (2009) to model both the distributions of the num-

ber of captures per occasion and the number of hair samples left conditional upon capture. This

could also address overdispersion in Sij due to pooling across traps if the number of hair samples

left at individual traps are well modeled by a Poisson. Second, we have modeled subsampling as
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a simple random sample, but subsampling is often conducted in other ways (e.g. Tredick et al.,

2007; Settlage et al., 2008; Dreher et al., 2009). Researchers frequently subsample in a manner

that maximizes the probability of identifying unique individuals. Since samples found at the same

trap/occasion are more likely to be from the same individual, genotyping multiple samples from the

same trap/occasion leads to diminishing returns in precision and accuracy (Dreher et al., 2009).

Therefore, researchers frequently take a systematic sample, for example, one sample from each

trap/occasion or one sample from a subset of traps on each occasion (e.g. Settlage et al., 2008).

The strategy of taking a fixed number of samples from each trap or a subsample of traps can be

accommodated by implementing different versions of the subsampling model.

Third, the subsampling process often contains a nonrandom component. Since hair samples

vary in their probability of producing an individual identification (David Paetkau pers. comm.),

researchers often send only high quality samples to the lab (Tredick et al., 2007; Wegan et al., 2012).

The quality of samples varies by the number of hairs with roots per sample, the type and duration of

environmental conditions samples were exposed to before collection (David Paetkau pers. comm.),

and the time of year the samples were collected (Wegan et al., 2012). If all hair samples had an

equal probability of being in the subsample regardless of sample quality, amplification rates could

be modeled as a function of sample quality covariates. Alternatively, our methodology can remove

bias by only modeling the high quality samples, but bias will remain to the extent that low quality

samples were left upon first capture and to the extent that there still remains variability in α among

the high quality samples.

Finally, the DNA amplification process can be more complex than we assumed. We ignored the

occurrence of genotyping error, specifically, individuals in the population having the same genotype

(Shadow effect; Mills et al., 2000) and identification of false individuals due to allelic dropout and

false amplification (Taberlet, 1996). Roon et al. (2005) demonstrated via simulation that with

appropriate error-checking protocols, bias from these errors can be minimized at error rates typical

of studies using multiple plucked hairs to obtain DNA samples (e.g. Paetkau, 2003). If bias from

these errors is thought to be large enough to warrant correction, existing models to correct this bias

(e.g. Link et al., 2010) could be extended to handle missing data in the presence of a behavioral

response to capture.

We also did not investigate missing data due to individuals undergoing a behavioral response
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without leaving a hair sample because there is no information available in the typical hair snare

mark-recapture study to model this source of bias. Our lack of knowledge of the magnitude of this

source of missing data in typical experiments leads to substantial uncertainty about how biased

experiments with behavioral responses and data subsampling may be. We have found only one

attempt to estimate this quantity (Boulanger et al., 2004). Using their top model, Boulanger et al.

(2004) estimated the probability of leaving at least one hair sample and at least one of those hair

samples producing an individual identification conditional on visiting a trap was 0.49 (C.I. = 0.26-

0.72). The estimated success rate for hair samples producing an individual identification, α̂, was not

estimated and we do not know how many hair samples bears left when they left ≥ 1 sample. Using

the values of α̂ (0.85) and λ̂ (1.8) observed in the data from Tredick et al. (2007) and assuming our

model structure, about 6% of bears leaving at least one hair sample will not produce an individual

identification, so we can estimate the probability of leaving at least one hair sample conditional

upon visiting a trap at 0.55. If this estimate is accurate and these bears underwent a behavioral

response, this source of missing data could introduce substantial bias, indicating that bias may be

of concern even if no subsampling takes place. In bear hair snare studies, this problem may be

reduced by using two strands of barbed wire rather than a single strand (Boulanger et al., 2006)

and similar strategies for making traps more effective may exist for other species. The additional

samples from more effective traps can reduce bias by making the missing data explicit, allowing it

to be modeled so the only added cost would be more expensive traps and in some cases, installation

time.

While we have focused on trying to reduce bias by modeling the behavioral response, hair

deposition, and DNA amplification processes, another strategy for reducing bias is to reduce the

magnitude of the behavioral response or try to remove it completely. Moving trap locations between

occasions has been successful in reducing individual heterogeneity in capture probabilities and

arguably reducing the magnitude of negative behavioral response to capture (Boulanger et al.,

2006). We think that missing data bias due to both behavioral response to capture and a correlation

between individual capture probability and number of hair samples deposited makes the case for

this sampling strategy even more compelling.

As argued in the Introduction, a behavioral response to capture should be expected in hair

snare experiments, but of most importance is the magnitude of the effect. As we demonstrated, Mb
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underestimates this magnitude in the presence of missing data. Further, rarefied data leads to the

selection of simpler models (Laufenberg et al., 2013). Together, the analyst is left with less power to

detect a behavioral response and if detected, the magnitude will be underestimated. Therefore, the

prevalence of support for Mb and the magnitudes of behavioral responses observed in the literature

are unlikely to be reliable indicators of how frequent and large behavioral responses are in typical

hair snare experiments. In order to assess the prevalence and magnitude of behavioral responses

in typical hair snare studies, methods that model the missing data need to be widely applied.

On a final note, we considered the dominant model for behavioral responses in classical mark-

recapture methodology for closed populations using hair snares for individual identification. How-

ever, the mechanisms of bias we identified should apply to other behavioral response models (e.g.

Yang & Chao, 2005; Hwang & Huggins, 2011; Ramsey & Severns, 2010), behavioral responses in

spatial mark recapture models (e.g. Royle et al., 2011), and in camera trap studies to the extent

there are missing data (e.g. photographs that do not produce an individual identification) and a

behavioral response to capture. It may be worthwhile to investigate the importance of missing data

in these other contexts.

6. DATA ACCESSIBILITY

The R code used to simulate from and fit Mb2 and Mb3 and the example data set are available in

online supporting information.
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7. TABLES

Table 1: Model notation

Term Definition

M Size of the super population
N Size of the population
ψ Probability that an individual in the super population is included in the

population
zi 1 if individuals in superpopulation are in the population, 0 otherwise
p Probability of first capture
c Probability of subsequent capture
qij Probability of capture for individual i on occasion j. Each element is either

p or c, depending on capture history before j
ωij 1 if individual i was captured on occasion j, 0 otherwise
λ Parameter determining the distribution of hair samples left conditional on

an individual encountering a trap
δ Sample retention probability during subsampling
α Probability a sample will produce an individual identification given that it

is genotyped
Sij Number of hair samples collected from individual i on occasion j
Uij Number of hair samples collected from individual i on occasion j that remain

after subsampling
Rij Number of hair samples collected from individual i on occasion j that remain

after subsampling and produce an individual identification
S.j Number of hair samples collected from all individuals on occasion j
U.j Number of hair samples collected from all individuals on occasion j that

remain after subsampling

17



Table 2: Bias in population size estimates, 95% CI coverage, mean 95% CI width, and bias in mean
estimated behavioral response when fitting Mb and Mb2 to data simulated from Mb2 and Mb3 to
data simulated from Mb3. N=250 for all simulations. α =

√
0.5 for all Mb3 scenarios.

Generating Model Fitting with Mb Fitting with Generating Model

N̂ |p̂ - ĉ| N̂ |p̂ - ĉ|

Scenario p c-p λ δ
%

Bias
CI

Cov.
CI

Width
%

Bias
%

Bias
CI

Cov.
CI

Width
%

Bias

1 Mb2 0.3 +0.2 1 0.5 +14 0.93 228.73 -27 0 0.99 74.40 +1
2 Mb2 0.3 +0.2 3 0.5 +4 0.92 80.55 -16 -1 0.94 54.61 -2
3 Mb2 0.3 +0.2 3 1.0 0 0.94 43.97 0 0 0.96 42.97 -1
4 Mb2 0.5 +0.2 1 0.5 +4 0.94 39.44 -39 0 0.96 20.73 +1
5 Mb2 0.5 +0.2 3 0.5 +1 0.95 17.49 -23 0 0.98 12.78 -2
6 Mb2 0.5 +0.2 3 1.0 0 0.94 8.35 -4 0 0.94 8.34 +1
7 Mb2 0.3 +0.4 1 0.5 +18 0.80 215.22 -32 0 0.92 69.18 +1
8 Mb2 0.3 +0.4 3 0.5 +6 0.90 82.77 -17 0 0.95 55.55 +1
9 Mb2 0.3 +0.4 3 1.0 -1 0.92 43.96 -8 0 0.93 43.42 0
10 Mb2 0.5 -0.2 1 0.5 -10 0.27 32.87 -29 0 1.00 36.67 -1
11 Mb2 0.5 -0.2 3 0.5 -4 0.63 17.60 -18 0 0.96 19.98 0
12 Mb2 0.5 -0.2 3 1.0 0 0.98 8.39 -1 0 0.95 9.00 -1
13 Mb2 0.7 -0.2 1 0.5 -4 0.41 15.17 -41 0 0.97 18.66 +3
14 Mb2 0.7 -0.2 3 0.5 -2 0.59 5.02 -25 0 0.97 8.25 +2
15 Mb2 0.7 -0.2 3 1.0 0 0.99 1.11 -1 0 1.00 1.11 +3
16 Mb2 0.7 -0.4 1 0.5 -13 0.01 12.79 -36 0 0.95 44.84 0
17 Mb2 0.7 -0.4 3 0.5 -5 0.01 4.66 -20 0 0.94 12.55 +1
18 Mb2 0.7 -0.4 3 1.0 0 0.96 1.10 +1 0 1.00 1.21 -1

1b Mb3 0.3 +0.2 1
√

0.5 -1 0.97 70.21 +3

4b Mb3 0.5 +0.2 1
√

0.5 0 0.98 20.56 +1

7b Mb3 0.3 +0.4 1
√

0.5 See corresponding results above. -2 0.96 63.06 +3

10b Mb3 0.5 -0.2 1
√

0.5 -1 0.95 35.88 +3

13b Mb3 0.7 -0.2 1
√

0.5 0 0.95 18.52 +1

16b Mb3 0.7 -0.4 1
√

0.5 -1 0.95 35.76 +2
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Table 3: Population size estimates, bias (relative to the best estimate of 86), 95% CI coverage, mean
95% CI width, and mean behavioral response estimate when fitting Mb and Mb3 to the example
data set with different levels of missing data. In two scenarios, the empirical distribution of the
number of hair samples, R, is replaced to remove additional sources of bias.

Mb Mb3

δ
Mean
N̂

%
Bias

CI
Cov.

CI
Width

Mean
|p̂− ĉ|

Mean
N̂

%
Bias

CI
Cov.

CI
Width

Mean
|p̂− ĉ|

1.00 86 . . 5.94 0.13 85 -1 . 2.00 0.17
0.75 80 -7 0.54 6.68 0.15 83 -3 0.88 8.93 0.22
0.50 71 -17 0.07 8.38 0.16 78 -9 0.52 14.05 0.28
0.25 52 -40 0.02 13.81 0.16 69 -20 0.47 25.52 0.31
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FIGURES

Figure 1: Directed Acyclic Graph of model Mb3. Stochastic nodes are represented by circles,
fixed parameters are represented by triangles, and deterministic functions of stochastic nodes are
represented by squares. Shaded nodes are observed and unshaded nodes are unobserved.
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Figure 2: Comparison of the simulated and approximated bias of N̂ computed via model Mb in
Simulation 1. The points represent the simulated bias for each scenario and the lines represent
the approximated bias computed with the method described in Appendix A.1. Scenario numbers
correspond to the numbering in Table 2.
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APPENDIX A. APPROXIMATE BIAS OF Mb

Here we develop methods to approximate the bias of the estimators of p and N from model Mb to

understand how missing data affects these estimators. The likelihood for Mb is

L [N, p, c|ω] =
N !

(N −Mt+1)!

(
pMt+1(1− p)tN−Mt+1−M.

) (
cm.(1− c)M.−m.) (A.1)

To study the bias of N̂ and p̂, we consider a two-stage process first maximizing the conditional

likelihood for the marked individuals:

L(p|Mt+1,M.) =
pMt+1(1− p)tMt+1−Mt+1−M.

(1− (1− p)t)Mt+1
(A.2)

to obtain p̂ and then computing the Horvitz-Thompson estimator:

N̂ =
Mt+1

1− (1− p̂)t
.

The results of ? show that these estimators are asymptotically equivalent to the full maximum

likelihood estimators obtained from equation (A.1). However, the asymptotic properties of these

estimators are easier to study because the conditional likelihood can be written as the product of

a fixed number, Mt+1, of independent likelihood contributions.

Let Ai denote the occasion when individual i is first identified (i.e., captured and genotyped)

with Ai = 0 if the individual is never identified. Then M. =
∑Mt+1

i=1 (t − Ai) = Mt+1(t − Ā)

where Ā = 1
Mt+1

∑Mt+1

i=1 Ai represents the mean occasion of first capture for the marked individuals.

Substituting into equation (A.2), the conditional likelihood is maximized by equating Ā with its

expected value under Mb:

Ā = EMb
(A|A 6= 0) =

∑T
a=1 a(1− p)(a−1)∑T
j=1(1− p)(j−1)

and solving for p. Following ?, pg. 55, the asymptotic bias of the conditional MLE can be computed

as Bias(p̂) = p0 − p where p0 solves the equation:

ETrue(A|A 6= 0) =

∑T
a=1 a(1− p0)(a−1)∑T
j=1(1− p0)(j−1)

(A.3)

22



and

ETrue(A|A 6= 0) =

∑T
a=1 aPTrue(A = a)

PTrue(A 6= 0)

represents the expected occasion of first capture under the true data generating model conditional

on an individual being captured at least one time. The percent bias in p̂ can then be approximated

as %Bias(p̂) ≈ 100(p0/p− 1).

To study the bias of N̂ we consider that Mt+1 =
∑N

i=1 I(Ai 6= 0) so that:

N̂ =

∑N
i=1 I(Ai 6= 0)

1− (1− p̂)t
.

Application of the weak law of large numbers implies that:

1

N

N∑
i=1

I(Ai 6= 0)
P→ PTrue(Ai 6= 0)

as N →∞. Combined with the previous result, this provides a formula for the approximate percent

bias of N̂ :

%Bias(N̂) ≈ 100

(
PTrue(Ai 6= 0)

1− (1− p0)t
− 1

)
.

Note that if the data are truly generated from Mb then p0 = p and PTrue(Ai 6= 0) = 1− (1− p)t so

that both %Bias(p̂) = 0 and %Bias(N̂) = 0.

A.1 Subsampling

Suppose that data is generated from model Mb, with one sample collected per capture, except that

samples are selected for genotyping with probability δ. Under this model:

PTrue(A = a) =

 pδ a = 1

pδ
[
(1− p)(a−1) + c(1− δ)

∑a−1
j=1(1− p)(a−j−1)(1− cδ)j−1

]
a = 2, . . . , t

and PTrue(A = 0) = 1 −
∑t

a=1 PTrue(A = t). For general t, %Bias(p̂) = 0 and %Bias(N̂) = 0 can

be computed numerically by computing ETrue(A|A 6= 0) and solving for p0 in equation (A.3). For
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t = 2 the equations can be solved explicitly yielding:

%Bias(p̂) = −100
(1− δ)c

p
and %Bias(N̂) = 100

(1− δ)(c− p)
p− (1− δ)c

.

Note that p̂ has negative asymptotic bias for all values of p, c, and δ in (0, 1), and the magnitude

of the bias increases as c/p increases and δ decreases. The asymptotic bias of N̂ depends on the

behavioral response. A trap happy response, c > p, will produce a positive bias while a trap shy

response, c < p, will produce a negative bias.

The formula for %Bias(N̂) with t = 2 suggests that the direction of the bias might be switched

for both trap happy and trap shy responses if (1 − δ)c > p. Note however that this only occurs

when %Bias(p̂) < −100% so that E(p̂) < 0. The problem is essentially that too much subsampling

occurs in these cases for Mb to be at all plausible. Under model Mb, PMb
(A = 1) > PMb

(A = 2) for

all values of p and c. However, if δ < 1− p/c then it is possible that PTrue(A = 1) < PTrue(A = 2)

under the data generating model with subsampling. In this case, the maximum of the conditional

likelihood is not an interior point of the support of p and the conditions for studying the asymptotics

of maximum likelihood estimators are broken. In practice, one would restrict p̂ to be positive by

setting p̂ = ε > 0 if the conditional likelihood function is monotone decreasing over (0, 1). Given

this restriction, %Bias(p̂) > −100 and the direction of the bias is completely determined by the

type of behavioral effect.

A.2 Multiple Samples and DNA Amplification Failure

If animals leave multiple samples on each occasion and/or not all DNA samples produce an indi-

vidual identification, then the asymptotic bias of p̂ and N̂ from model Mb can be computed by

following the same argument except that δ is replaced by the probability that an individual is

identified when captured. Assuming that the number of samples left on capture follows the zero-

truncated Poisson distribution with parameter λ, as defined in equation (1), and that errors occur

independently with probability α, the probability that a captured individual is identified is:

PTrue(Rij ≥ 1|ωij = 1) =
eλ(1− e−λαδ)

eλ − 1
.
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As before, the approximate bias of N̂ and p̂ can be computed numerically by computing the expected

value of A and solving for N0 and p0. Figure 2 compares the approximate bias computed by this

method with the empirical bias of the estimates for model Mb obtained from Simulation 1. The

results show strong correspondence with only slight deviations at the highest levels of subsampling.

APPENDIX B. MCMC ALGORITHM

Values from the joint posterior of the complete data z, S, U , R and the model parameters ψ, p,

c, λ, α are generated via MCMC using the following steps to update these values:

1. Update z:

Gibbs sampling step for each i = Mt+1 + 1, . . . ,M . If
∑t

j=1 Sij > 0 then zi = 1 with

probability 1. Otherwise:

zi ∼ Bernoulli

(
ψ(1− p)t

ψ(1− p)t + (1− ψ)

)

2. Update S:

Separate Metropolis-Hastings steps for each occasion. The proposal for occasion j is con-

structed by reassigning the ungenotyped samples for a randomly selected set of K individuals

as follows:

Given z, U , and Scurr:

(a) Sample i1, . . . , iK from {i : zi = 1} without replacement.

(b) Compute dk = Sikj − Uikj , k = 1, . . . ,K.

(c) Generate d′1, . . . , d
′
K ∼ Multinomial

(∑K
k=1 dk, (1/K, . . . , 1/K)

)
.

(d) Set S′ikj = Uikj + d′ik k = 1, . . . ,K and S′ij = Scurr
ij otherwise.

3. Update U : (Model Mb3 only)

Separate Metropolis-Hastings steps for each occasion. The proposal for occasion j is con-

structed by reassigning genotyping failures for a randomly selected set of K individuals as

follows:

Given S, R, and Ucurr:
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(a) Sample i1, . . . , iK from {i :
∑t

j=1 Sij ≥ 1} without replacement.

(b) Compute dk = Uikj −Rikj , k = 1, . . . ,K.

(c) Generate d′1, . . . , d
′
K ∼ Multinomial

(∑K
k=1 dk, (1/K, . . . , 1/K)

)
.

(d) Set U ′ikj = Rikj + d′ik k = 1, . . . ,K and U ′ij = Scurr
ij otherwise.

4. Update ψ, p, c, λ:

The parameters ψ, p, c, and λ are updated in a joint Metropolis-Hastings step with proposal

generated from a multivariate normal distribution centered on the current values:

(logit(ψ′, p′, c′), log(λ′))′ ∼ N
(
(logit(ψcurr, pcurr, ccurr), log(λcurr))′,Σ

)
.

The variance-covariance matrix of the proposal distribution is tuned so that:

Σ ≈ 2.382

4
Var

(
logit(ψcurr), logit(pcurr), logit(ccurr), log(λcurr)|S

)
to give the optimal acceptance probability (??).

5. Update α: (Model Mb3 only)

Gibbs sampling step:

α|R,U ∼ Beta

1 +
M∑
i=1

t∑
j=1

Rij , 1 +
M∑
i=1

t∑
j=1

(Uij −Rij)


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APPENDIX C.

We identified two potential reasons our methodology did not perform as well in the example as it

did in the simulations: first, overdispersion in Sij , possibly due to a few bears visiting multiple

traps on a single occasion, and second, correlation between individual-specific capture probability,

pi, and individual-specific hair deposition parameter λi (see Discussion for further elaboration).

To determine the relative influence of each, the hair sample portion of the data were replaced

in two scenarios, while maintaining the original capture history structure. To assess the impact

of correlation between pi and λi, we first fit a zero-truncated negative binomial distribution to

the observed distribution of deposited hair samples, Rij , and then simulated new values for the

number of hair samples left per individual/occasion from this distribution (zero-truncated negative

binomial parameters were estimated to be size=0.782 and µ=0.857). This removed the potential

correlation between pi and λi, but retained the overdispersion. Second, we fit a zero-truncated

Poisson distribution to the observed data and then simulated the number of hair samples left per

individual/occasion from this distribution (zero-truncated Poisson parameter was estimated to be

λ=1.534). This removed both the potential correlation between pi and λi and the overdispersion.

As before, 100 data sets were simulated and Mb and Mb3 were fit to each, but we limited this

analysis to the largest missing data scenario (δ=0.25). Time effects for the capture probabilities

were detected in the original analysis of this data set (Tredick et al., 2007), but were ruled out as a

potential source of bias in the presence of missing data as simulations (not presented here) showed

that unmodeled time effects do not interact with missing data to increase bias.

Removing the potential correlation between pi and λi by simulating Rij as negative binomial

produced an Mb estimate with slightly less bias relative to our best estimate, but HPD interval

coverage of our best estimate when δ=0.25 was still poor (0.16). Fitting Mb3 to the same scenario

decreased bias from -20% to -13% and improved coverage from 0.47 to 0.68. Improved coverage in

these scenarios was driven largely by the moderate reduction in bias. Removing the overdispersion

by simulating Rij as Poisson did not lead to substantially improved estimates, with mean N̂=75 in

both cases and similar coverage. In the Discussion we consider other possible sources of bias that

may be preventing our methodology from correcting all of the bias in this data set.

Estimates of the behavioral effects also behaved differently then observed in the simulation

study. In Simulation 1, the behavioral response |p − c| was increasingly underestimated using Mb

27



when the level of missing data increased, but estimated with essentially no bias by Mb3 for the levels

of missing data considered. The example data set did not respond to missing data in the same

manner. The behavioral response was overestimated with increasing levels of missing data using

both Mb and Mb3. Removing the potential correlation between pi and λi removed this discrepancy

for Mb and reduced, but did not entirely remove, this discrepancy for Mb3.

Table 4: Population size estimates, bias (relative to the best estimate of 86), 95% CI coverage, mean
95% CI width, and mean behavioral response estimate when fitting Mb and Mb3 to the example
data set when δ=0.25. In two scenarios, the empirical distribution of the number of hair samples,
R, is replaced to remove additional sources of bias.

Mb Mb3

R dist.
Mean
N̂

%
Bias

CI
Cov.

CI
Width

Mean
|p̂− ĉ|

Mean
N̂

%
Bias

CI
Cov.

CI
Width

Mean
|p̂− ĉ|

Empirical 52 -40 0.02 13.81 0.16 69 -20 0.47 25.52 0.31
Nbinom 57 -34 0.16 21.20 0.13 75 -13 0.68 27.12 0.24
Poisson . . . . . 75 -13 0.63 26.15 0.24
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