The Effects of Mountaintop Removal Mining and Valley Fills on Stream Salamander Occupancy and Community Composition Brenee' L. Muncy^a, Steven J. Price^a, Simon J. Bonner^b and Christopher D. Barton^a ^aDepartment of Forestry, University of Kentucky, Lexington, KY 40546-0073 USA ^bDepartment of Statistics, University of Kentucky, Lexington, KY 40546-0082 USA Corresponding Author (SJP) email: steven.price@uky.edu

Phone: 859-257-7610; Fax: 859-323-1031

Abstract

13

14	Mountaintop removal mining and valley filling (MTR/VF) is a ubiquitous form of land
15	conversion in central Appalachia, USA and threatens the integrity of stream ecosystems. We
16	investigated the effects of MTR/VF on stream salamander occupancy probabilities and overall
17	community composition by conducting area constrained active searches for salamanders within
18	first-order streams located in mature forest (i.e., control streams) and those impacted by
19	MTR/VF. We found high mean species occupancy across 5 species at control streams, ranging
20	from $0.73~(95\%~CI~0.41-0.96)$ to $0.90~(95\%~CI~0.77-0.98)$. Occupancy was lower at MTR/VF
21	streams, with mean estimated occupancy probability ranging from 0.23 (95% CI 0.04-0.51) to
22	0.62 (95% CI 0.36-0.86). Additionally, the mean species richness for MTR/VF streams was 2.27
23	$(\pm 1.27~SD)$ whereas richness was 4.67 $(\pm 0.65~SD)$ for control streams. Numerous mechanisms
24	may be responsible for decreased occupancy and species richness at MTR/VF streams, although
25	water chemistry may be particularly important. Indeed, mean specific conductance was 30 times
26	greater, sulfate (SO ₄) levels were 70 times greater, and concentrations of dissolved ions (Ca, Mg,
27	K, Na) were greater in MTR/VF streams than in control streams. Our results indicate that
28	salamander occupancy and communities are reduced in streams impacted by MTR/VF mining
29	practices.
30	Abbreviations
31	MTR/VF, mountaintop removal mining and valley filling; Ψ , occupancy; Θ , detection
32	probability; u_i , species-specific mean probability of occurrence; v_i , species-specific mean

34

35

33

Keywords: amphibians; Appalachia; coal mining; Kentucky; species richness

probability of detection; U, uniform distribution

Introduction

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Mountaintop removal has become the dominant type of mining for the extraction of shallow coal seams in central Appalachia. The coal seams are accessed by first removing forests, then clearing and stripping topsoil, and finally, using explosives, overlain rocks are removed to allow for excavation of coal (Palmer et al., 2010). The overburden material that is removed (i.e., mine "spoil") is pushed into an adjacent valley, burying portions of ephemeral, intermittent, and perennial streams located next to mining operations and creating a valley fill (Bernhardt and Palmer, 2011). When exposed to atmospheric conditions and surface runoff, the unweathered overburden material often leaches heavy metals along with high levels of salts into the partially buried streams (Griffith et al., 2012). Thus, water that emerges from the base of valley fills can exhibit altered pH, greater specific conductance, and elevated levels of total dissolved solids (i.e., sulfates (SO₄), calcium (Ca), magnesium (Mg)) compared to unaltered streams (Fritz et al., 2010; Palmer et al., 2010; Barton, 2011; Lindberg et al., 2011). Additionally, because of reduced vegetative cover and highly compacted soils on mountaintop removal mined lands, streams impacted by mountaintop removal mining and valley fill (MTR/VF) typically have altered hydrology (i.e., decreased infiltration, increased peak flows) compared to streams within forested catchments (Negley and Eshleman, 2006). More than 1.1 million ha of forest land has been altered by surface mining in central Appalachia, USA (Bernhardt and Palmer, 2011). In the Commonwealth of Kentucky, approximately 2,000 km of streams have been impacted by valley fills (Barton, 2011), and over 20% of streams in southern West Virginia are affected by runoff from surface coal mines (Bernhardt et al., 2012). Appalachian streams influenced by MTR/VF are often characterized by diminished biological communities in comparison to reference streams. For example, macroinvertebrate

richness in MTR/VF streams is significantly reduced compared to reference locations (Pond, 2010, 2012), and decreases in freshwater mussel diversity are positively correlated with extent of surface mines within catchments of central Appalachian rivers (Warren and Haag, 2005).

Additionally, fish species richness is reduced by 50% at sites downstream from MTR/VF (Ferreri et al., 2004). Amphibians, specifically salamanders, are important components of low-order stream ecosystems (Davic and Welsh, 2004); up to 9 species occur within central Appalachian streams (Petranka, 1998). Salamanders represent the dominant predators in low-order streams, and are responsible for driving many ecosystem-level processes (i.e., nutrient cycling; Davic and Welsh, 2004; Keitzer and Goforth, 2013). Although Wood and Williams (2013) documented reduced abundances of stream salamanders in MTR/VF streams, investigations on the responses of stream salamander species' occupancy and communities to MTR/VF are lacking.

To evaluate the effects of MTR/VF on stream salamanders, we compared species' occupancy and community composition within streams located in mature, second-growth forest (i.e., control streams) to MTR/VF streams located on reclaimed mountaintop removal mined land. Specifically, we employed a multi-species hierarchical model to estimate species-specific and community-level responses of salamanders to MTR/VF while accounting for species-specific variation in detectability (Zipkin et al., 2009; Hunt et al., 2013). Additionally, we evaluated water chemistry attributes and other habitat characteristics of MTR/VF and control streams to determine mechanisms potentially responsible for species occupancy and community composition. We hypothesized that MTR/VF would have a negative effect on species' occupancy probabilities and richness, and that MTR/VF streams would differ significantly in water chemistry and habitat characteristics from control locations.

Methods

Study Sites -

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

We investigated salamander occupancy probabilities and community composition at 23 first-order streams located in the interior rugged section of the Cumberland Plateau in Breathitt and Knott Counties, Kentucky USA. This region has seen extensive changes in land-use over the last 30 years; more than 194,000 ha of eastern Kentucky has been affected by surface mining (C. Barton, personal communication). We sampled salamanders at 11 MTR/VF first-order streams located on the reclaimed Laurel Fork surface mine (4144091.438 N 307635.435 E Zone 17) and 12 control first-order streams in approximately 80-yr-old ,second-growth forest on the University of Kentucky's Robinson Forest, which shares a northeast border with the Laurel Fork surface mine. Robinson Forest is a 5,983 ha teaching, research and extension experimental forest composed of eight discontinuous properties. Our control streams were located with the main block of Robinson Forest comprising approximately 4,200 ha. Land-cover with catchments of control streams consisted of typical, mixed mesophytic forests of the region; dominant tree species consisted of white oak (Quercus alba), tulip tree (Liriodendron tulipifera), Eastern hemlock (*Tsuga canadensis*), and chestnut oak (*Quercus prinus*) (See Phillippi and Boebinger, 1986).

During the mid-1990s, approximately 607 ha of the 890 ha Laurel Fork watershed, was mined for coal. The catchments of the MTR/VF streams sampled in our study were surface mined in the late 1990s and reclamation occurred in the early 2000s. Bond release, indicating that reclamation was satisfied, was issued in November of 2007. All of the streams used in this study were partially buried by overburden (i.e., valley-filled); all VFs had perimeter drains, which collect seepage and runoff from around the VF and direct the runoff into the original stream channel. Dominant vegetation cover of the MTR/VF catchments included the nitrogen-

fixing herb Sericea lespedeza (*Lespedeza cuneata*) and grasses (tall fescue; *Schedonorus arundinaceus*), with autumn olive (*Elaeagnus umbellate*), Virginia pine (*Pinus virginiana*), white oak (*Q. alba*) and black locust (*Robinia pseudoacacia*) scattered throughout the landscape. Despite low forest cover within catchments, all MTR/VF stream riparian zones and adjacent terrestrial habitat was primarily forested. See Fritz et al. (2010) for additional information on the Laurel Fork study site.

Data Collection Methods -

Area-constrained active searches were used to sample salamanders at each stream, in a single, 10-m sampling transect. We chose transects within streams on the basis of similarity of width, depth and current velocity. Additionally, all transects included a pool, run and riffle section. Streams impacted by MTR/VF were generally sampled at the base of the VF. We used a combination of systematic dipnetting and bank searches to capture salamanders (See Price et al., 2011). Dipnetting consisted of one person, moving from downstream to upstream, actively searching for salamanders around and under submerged rocks, logs, and other cover within the 10-m sampling transect. One person also conducted bank searches, which included searching under rocks, logs, leaf litter and other material within 1 m of the wetted width of the stream. In general, dipnetting sessions took approximately 30 minutes and bank searches took 15 minutes to complete. All salamanders captured were held in containers until the search was complete. After the active search, we recorded each species and the associated life stage (adult or larva) prior to release. Each 10-m transect was sampled four times (i.e., usually monthly) from March through June 2013. All searches were conducted during day light hours in base flow conditions.

We recorded several variables before each active search. Prior to sampling, we measured the wetted width and depth at the start, middle, and end of each 10 m sampling transect and

counted the number of cover objects within our sampling transects. Specifically, we considered rocks > 50 mm in diameter as well as logs and other woody debris cover objects of importance to salamanders. Also, we recorded air temperature (C°), water temperature (C°), wind speed, degree of cloudiness, and the date of last precipitation. Additionally, a 50 mL water sample was collected prior to each sampling event and placed on ice. The samples were analyzed for concentrations of Ca, Mg, SO₄²⁻, potassium (K), sodium (Na), total organic carbon (TOC), pH and specific conductance; sampling, preservation, and analytic protocols were performed in accordance with standard methods (Greenberg et al., 1992).

Finally, we used a geographic information system (ArcGIS 10.1 ESRI) and Watershed tool in ArcToolBox to calculate the catchment area and percent of catchment in forest cover of each of our study stream. To calculate catchment area, we used recent, high resolution (0.6 m), digital elevation model (DEM) data as our base layer for catchment delineation. Forest cover was obtained via 2013 United States Geological Survey 7.5-minute image map for Noble, KY quadrangle; we considered both mature and younger forest classes as forest cover in our analysis of each stream catchment.

Data Analysis –

We used Bayesian t-tests with unequal variances (Kèry, 2010) to compare several environmental attributes between control and MTR/VF streams. Attributes included: percent of the stream catchment in forest cover, average stream wetted width and depth in our sampling transects, number of cover objects within our sampling transects, water temperature, specific conductance, TOC, pH, SO₄, Ca, Mg, K, and Na. All water quality data used in the analysis were obtained during May 1-15, 2013 salamander sampling events. We used uninformative priors for each model, which varied depending on the covariate being analyzed (i.e., percent forest cover

mean = Uniform distribution (U(0, 1)), standard deviation (SD) = U(0, 10); average stream width mean = U(0, 250), SD U =(0,300); average stream depth mean = U(0, 25), SD = U(0,30); cover objects mean = U(0,80), SD = U(0,100); water temperature mean = U(0, 25), SD U(0, 30); specific conductance mean = U(0, 3000), SD U(0, 10000); TOC mean = U(0, 100), SD = U(0,500); pH mean = U(0, 10), SD = U(0, 15); SO₄ mean = U(0, 1500), SD = U(0, 2000); Ca mean = U(0, 50), SD = U(0, 75); Mg, K, and Na mean = U(0, 20), SD = U(0, 30)). We used the R add-in library R2OpenBUGS (Sturtz et al., 2005), to organize our data into program R (2.14.0) (R Development Core Team, 2010), and used Markov chain Monte Carlo methods as implemented in OpenBUGS (Lunn et al., 2009) with three chains of 20,000 iterations, thinning factor of 1 after 5,000 burn-in iterations to analyze each model. We evaluated the Markov chains by examining the history plots and the Gelman-Rubin statistic for each parameter for evidence of lack of convergence (Gelman and Rubin, 1992). The Gelman-Rubin statistic compares between-and within-chain variability; values near 1 (and up to 1.1) indicate likely convergence (Gelman and Hill, 2007).

We used a hierarchical Bayesian modeling approach to estimate species-specific and community responses to MTR/VF mining. This multi-level approach provided estimates of site-specific species richness in addition to separate estimates for species-specific occupancy and detection probabilities; therefore community-level and species-level attributes are incorporated into the same modeling framework (Dorazio and Royle, 2005; Zipkin et al., 2009). Specifically, we used a model similar to that used by Zipkin et al. (2009) and Hunt et al. (2013), to estimate species' occupancy and community responses to one site covariate (i.e., MTR/VF) and four survey covariates (water temperature, date of last precipitation, Julian date and Julian date²). One level of our model assumed a "true" (but only partially observed) presence-absence matrix

 z_{ij} for species i = 1, 2, ..., N at site j = 1, 2, ..., J where $z_{ij} = 1$ if a species i was present at site j, and $z_{ij} = 0$ if the species was absent at site j. Because z_{ij} was uncertain, we specified a model for occurrence, that used a Bernoulli distribution, where $z_{ij} \sim Bern(\Psi_{ij})$, and Ψ_{ij} is the probability that a species i occurs at site j.

We used the salamander data we collected to generate species-specific encounter matrices for four sampling occasions at each stream. Within each species-specific matrix, detection was represented as 1 and non-detected was represented as 0. Thus, the data provided a three dimensional matrix x_{ijk} for species i at site j for the kth sampling occasion. An additional level of our model specified that $x_{ijk} \sim Bern\left(\Theta_{ijk}z_{ij}\right)$ where z_{ij} is the true occurrence matrix described above, and the Θ_{ijk} is the detection probability for a species i at site j for the kth sampling occasion. This fulfills the condition that $x_{ijk} = 0$ if the species i is not present at site j, because in that case $z_{ij} = 0$.

We used the following equations to relate species-specific covariate parameters (α and β values) and occupancy and detection probabilities (Ψ_{ij} and Θ_{ijk} , respectively) to the hierarchical models we described above:

189
$$logit(\Psi_{ij}) = u_i + \alpha I_i MTR/VF_j$$

 $logit(\theta_{ijk}) = v_i + \beta I_i Juliandate_{jk} + \beta 2_i Juliandate^2_{jk} + \beta 3_i water temperature_{jk}$

+ $\beta 4_i Date of last precipitation_{jk}$

The MTR/VF covariate was defined by whether the stream site was MTR/VF (represented as 1) or a control (represented as 0). Julian date, water temperature, and Date of last precipitation, were assumed to influence detection rate of stream salamanders based on previous studies (See Spotila 1972; Orser and Shure 1975; Connette et al. 2011). Julian date was defined as the standardized score of Julian days since January 1, and Julian date² was defined as the

squared standardized score of Julian days since January 1, *Water temperature* was defined as the standardized value of water temperature in degrees, and *Date of last precipitation* was defined as the number of days since the last precipitation event. We included the Julian date (for linear effect) and Julian date squared (for squared effects along a normal distribution) because the capture probability, due to activity, may change during our sampling period from March to June. Standardization of covariates allowed for the estimation of Ψ and Θ at mean site and survey covariates from model-generated estimates of u_i (species-specific mean probability of occurrence) and v_i (species-specific mean probability of detection). Standardization of covariates also enabled direct comparison of the model coefficients as effect sizes relative to variation in each covariate. Our parameters u_i and v_i followed a joint normal distribution such that $[u_i, v_i | \Sigma] \sim N(0, \Sigma)$ (Dorazio et al., 2006), where Σ denotes a 2 x 2 symmetric matrix with diagonal elements σ^2_u and σ^2_v (the respective variances in u_i and v_i) and with off-diagonal elements σ_{uv} equal to the covariance in u_i and v_i (Dorazio and Royle, 2005).

Seven species-specific parameters were estimated by the model $(u_i, \alpha 1_i, v_i, \beta 1_i, \beta 2_i, \beta 3_i, \beta 4_i)$. Community summaries (μ) were estimated by another hierarchical level of the model assuming that the species-specific parameters were random effects, each governed by a community-level hyper-parameter. For example, $\alpha 1_i \sim N(\mu_{\alpha l}, \sigma_{\alpha 1})$ where $\mu_{\alpha l}$ is the mean community response (across all species) to the MTR/VF covariate $(\alpha 1)$, and $\sigma_{\alpha 1}$ is the standard deviation in $\alpha 1$ across species (Kèry et al., 2009). Using this hierarchical method, estimation of species-specific parameters can be precise, even where species are rare (Zipkin et al., 2009).

Our model used uninformative priors for the hyper-parameters and community summaries (e.g., U(0,5) for all σ parameters and U(-10 to 10) for μ_{α} and μ_{β} parameters). We organized our data into program R (2.14.0) (R Development Core Team, 2010) and used the R

add-in library R2OpenBUGS (Sturtz et al., 2005) to execute data analysis in the software program OpenBUGS (Lunn et al., 2009). Posterior summaries were based on 300,000 Markov chain Monte Carlo (MCMC) iterations, in which we disregarded the first 30,000 as burn-in with a thinning rate of 3. The mean and standard deviation of the model coefficients were calculated, in addition to the 2.5 and 97.5 percentiles of the distribution, which represent 95% Bayesian credible intervals. We used the log transformation (i.e., $(\exp(\alpha)/(1 + \exp \alpha))$) to derive speciesspecific occupancy and detection estimates. Convergence of the Markov chains were evaluated by observing the history plots and the Gelman-Rubin statistic (Gelman and Rubin, 1992). Lastly, with our model, we calculated mean species richness at MTR/VF sites and control sites, then calculated the pair-wise difference between mean species richness of MTR/VF sites and control sites and used 95% credible intervals to assess that difference.

Results

The average catchment size for control sites was 24.70 ha (± 21.34 SD), MTR/VF site average was 24.51 ha (± 15.48 SD). Proportion of forest cover within the stream catchments and number of cover objects within the streams were greater at control streams than MTR/VF streams (Table 1). However, average wetted width (cm), and depth (cm) were similar between reference and MTR/VF stream transects (Table 1). Water chemistry attributes were consistently different between MTR/VF streams and control streams (Table 1). In particular, mean specific conductance was nearly 30 times greater at MTR/VF streams than at control sites and mean sulfate concentration was over 70 times greater at MTR/VF streams (Table 1). The remaining stream water quality attributes (temperature, pH, total organic carbon, Ca, Mg, K, Na) also were greater at MTR/VF stream compared to control streams (Table 1). For all environmental

attributes, stationary distribution appeared to be achieved based on well-mixed history plots and the Gelman and Rubin statistic (<1.001 for all monitored parameters; Gelman and Rubin, 1992).

We detected 9 salamander species during our active searches; raw counts of salamander species at control sampling transects ranged from 2 to 6, species counts at MTR/VF sampling transects ranged from 0 to 4. However, we only considered 5 species (i.e., *D. fuscus*, *D. monticola*, *E. cirrigera*, *G. porphyriticus*, and *P. ruber*) in our analysis as these species are primarily associated with streams. We detected a total of 97 salamanders at MTR/VF sites and 804 salamanders at control sites. Some species were rarely detected at MTR/VF sites; for example, only two *G. porphyritcus* and five *P.ruber* individuals were detected at MTR/VF streams. Mean baseline species detection probabilities ranged from 0.38 (95% CI 0.16-0.63) for *P. ruber* to 0.72 (95% CI 0.58-0.85) for *G. porphyriticus*. Model estimated detection parameters were not strongly influenced by sampling covariates.

Our model indicated high rates of mean species occupancy across all 5 species at control streams; mean estimated occupancy probabilities ranged from 0.73 (95% CI 0.41-0.96) for *P. ruber* to 0.90 (95% CI 0.77-0.98) for *E. cirrigera* (Fig. 1). Occupancy was lower at MTR/VF streams, with mean estimated occupancy probability ranging from 0.23 (95% CI 0.04-0.51) for *G. porphyriticus*, to 0.62 (95% CI 0.36-0.86) for *E. cirrigera* (Fig. 1). Despite having high posterior standard errors, we found that the species-specific α1_i parameter estimates were all negative and 95% credible intervals did not overlap with zero in any case, which collectively indicates that all species were less likely to occupy MTR/VF streams (i.e., *D. fuscus*, -2.41 (95% CI -3.96 – (-0.27), *D. monitcola*, -2.42 (95% CI -4.13 – (-0.70), *E.cirrigera*, -2.20 (95% CI -3.96 – (-0.39), *G. porphyriticus*, -3.70 (95% CI -4.93 – (-2.06), *P. ruber*, -2.68 (95% CI -4.54 (95% CI -4.13 – (-0.79)). For our model, stationary distributions appeared to be achieved based on

well-mixed history plots and the Gelman and Rubin statistic (<1.001 for all monitored parameters; Gelman and Rubin, 1992).

When all the salamander species were considered together, as a community the mean occupancy in MTR/VF streams was 0.50 (95% CI 0.06-0.95) and mean occupancy in control streams was 0.87 (95% CI 0.64-0.96) suggesting that salamanders have a higher probability of occupancy in streams that have not been affected by MTR/VF. The 95% credible interval for the occupancy covariate (μ_{al} MTR/VF) contained only negative values -1.94 (95% CI -3.31-(-0.31)) and the 95% credible interval for the standard deviation (i.e., 1.20 (95% CI 0.090-3.15), in the response to the covariate across species (σ_{al} MTR/VF) was less than the absolute value of the mean estimate, indicating certainty in the mean response across species (Table 2). All of the mean parameter estimates for detection covariates ($\mu_{\beta l}$ – Julian date, $\mu_{\beta 2}$ – Julian date squared, $\mu_{\beta 3}$ – Water temperature, and $\mu_{\beta 4}$ – Date of last precipitation) covered zero and contained both positive and negative values in the 95% credible intervals, indicating uncertainty in the mean community responses to these covariates (Table 2). The mean species richness estimate for MTR/VF streams was 2.27 (\pm 1.27 SD) whereas richness was 4.67 (\pm 0.65 SD) for control streams (mean difference of 2.29 [95% CI 1.97-2.65)] between control and MTR/VF).

Discussion

We found that streams impacted by MTR/VF had reduced salamander occupancy and species richness and altered environmental attributes compared to control streams. Recent research in West Virginia found that stream salamander abundance was reduced in first and second-order MTR/VF streams compared to reference streams, yet species richness did not differ between MTR/VF streams and control streams (Wood and Williams, 2013). Based on our analysis, mean occupancy rates across five stream salamander species were reduced in MTR/VF

compared to control streams. We recognize, however, that local abundance might be a source of systematic, detection bias in our study (See Royle and Nichols 2003). If detectability is dependent on abundance then our model will not be able to separate sites with very low abundance from those unoccupied by salamanders. However, given the assumption of equal detectability between site types in our current analysis we conclude that species occupancy and species richness differ between stream types.

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Reduced salamander occupancy and species richness may be due to a complex set of interacting factors operating in both terrestrial and aquatic habitats. First, the deposition of overburden into valleys results in the permanent loss or burial of most of the length of low-order streams within valleys (Palmer et al., 2010). The permanent loss of streams likely reduces connectivity among salamander populations across landscapes, leading to reduced gene flow and possible local extinction for some species (i.e., Munshi-South et al., 2013). Second, MTR/VF streams often have reduced forest cover within catchments, which has been shown to be negatively correlated with salamander occupancy rates and abundances (i.e., Ford et al., 2002; Price et al., 2011; Price et al., 2012). Indeed, the MTR/VF streams had, on average, 75% less forest cover than control streams; land-cover within MTR/VF catchments was dominated by non-native grasses and shrubs. Reduction of forest cover within stream catchments may be particularly detrimental to species such as P. ruber and E. cirrigera, which extensively use terrestrial habitats during the non-breeding season (Petranka 1998). Additionally, Wood and Williams (2013) noted lower terrestrial salamander abundance and species richness within reclaimed, grass-dominated surface mine and suggest that poor soils, reduced vertical structure of vegetation, little tree cover, and inadequate litter and wood debris cover contributed to their findings. Nature history differences, such as use of terrestrial habitat by stream salamanders,

may contribute interspecific differences we observed in occupancy probability; however formal tests are needed to determine relationships between salamander natural-history traits and sensitivity to MTR/VF.

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Land-cover changes on MTR/VF sites lead to numerous changes in hydrology and alterations to in-stream habitat, which may also lead to decreased salamander occupancy and species richness. Reclaimed mined sites have soils containing un-weathered rock that is heavily compacted to reduce erosion, altered water tables, and disturbed flow paths (Bonta et al., 1992; Bernhardt and Palmer, 2011). In particular, compacted soils lead to high rates of storm water runoff; Negley and Eshleman (2006) and Ferrari et al. (2009) found that MTR/VF streams had tripled storm runoff and doubled flow rates compared to reference catchments. High peak flows have been shown to negatively affect survival of larval E. cirrigera in urban settings (Barrett et al., 2010) and may influence survival and occupancy rates within MTR/VF streams. Altered hydrology is often apparent through stream bank erosion and sedimentation, which can be excessive in MTR/VF streams (Fox, 2009). Sedimentation results in burial of rocks and boulders and the infilling of interstitial spaces between rocks, which reduces available microhabitats for salamanders (Lowe and Bolger, 2002). Wood and Williams (2013) suggest that sedimentation contributed to lower abundances of stream salamanders in West Virginia MTR/VF streams and Redmond (1980) found Black Mountain Dusky Salamanders (D. welteri) were excluded from highly silted streams due to coal mining.

We found MTR/VF streams had elevated levels of specific conductance, sulfates, total organic carbon, and dissolved ion concentrations. A previous study conducted at the Laurel Fork mine also found elevated specific conductance levels and dissolved ion concentrations at three of our study sites (Fritz et al., 2010), and numerous investigations on the effects of MTR/VF on

water chemistry corroborate our results (i.e., Hartman et al., 2005; Pond et al., 2008; Wood and Williams, 2013). Amphibians are poor osmoregulators; high specific conductance has been shown to have a wide range of adverse effects (i.e., physical abnormalities, reduced survivorship, reduced activity, increased corticosterone levels) on larval stages of amphibians (Sanzo and Hecnar, 2006; Karracker, 2008; Chambers, 2011), perhaps resulting in population declines and species extirpations. Miller et al. (2007) found that larval *E. cirrigera* abundance was negatively related to specific conductance levels in urban streams and Schorr et al. (2013) found that occurrences of four salamander species of the Cumberland Plateau (*D. fuscus, P. ruber, E. cirrigera, G. porphyriticus*) were negatively correlated with elevated specific conductance levels (i.e., >100 μS/cm). Stream invertebrates are an important prey item for salamanders (Petranka, 1998; Davic and Welsh, 2004) and decreases in macroinvertebrate populations due to water chemistry are well documented in streams impacted by MTR/VF (Pond, 2010,2012). Thus, adverse effects on larval amphibians combined with a reduction in prey items may lead to decreases in salamander occupancy and species richness.

The disturbance caused by MTR/VF is drastically changing the central Appalachian landscape, compromising the natural ecological and functional state of both terrestrial and aquatic environments. The reclamation process, emphasizing soil compaction and the establishment of non-native herbaceous species, has hindered the establishment of native tree species on MTR sites (Zipper et al., 2011). These terrestrial impacts in combination with the VF influences stream ecosystems. Simmons et al. (2008) suggests that MTR/VF leads to long-lasting changes to terrestrial and aquatic ecosystem function; in fact, full recovery of species diversity in streams impacted by MTR/VF has not been documented (Palmer et al. 2010).

Because stream salamanders use both terrestrial and aquatic habitats; it is not surprising that we

found that MTR/VF resulted in reduced occupancy and species richness. Although there is no evidence suggesting that chemical and hydrological alterations of streams by MTR/VF can be ameliorated by current reclamation procedures (Bernhardt and Palmer 2011), the Forestry Reclamation Approach (FRA) that advocate reforesting MTR/VF land, could be beneficial for salamander communities via not only increasing forest cover within catchments, but also by influencing hydrology and water chemistry within the disturbed watershed (Burger et al., 2005; Zipper et al., 2011). However, research documenting the proximate mechanisms driving reduced salamander occupancy and species richness is likely needed if recovery is to be successful.

Acknowledgements

We thank D. Collett, A. Drayer, C. Elmore, P. Muncy and C. Osborne for helping with data collection. M. Contreras and D. Parrott provided GIS material for this study. We thank M. Hamilton for analyzing water samples. J. Guzy and B. Hallstead aided with statistical analysis. Initial drafts of this manuscript were improved by S. Hamilton, D. Wagner and P.B. Wood. Partial funding was provided by the Kentucky Society of Natural History.

373	Literature Cited				
374	Barrett, K., Helms				

395

ns, B.S., Samoray, S.T. Guyer, C., 2010. Growth patterns of a stream 375 vertebrate differ between urban and forested catchments. Freshwater Biology. 55, 1628-376 1635. 377 Barton, C., 2011. Coal mining versus water quality: an electrifying topic. American Water 378 Resources Association: Water Resource Impact. 13, 23-24. 379 Bernhardt, E.S., Palmer, M.A., 2011. The environmental costs of mountaintop mining valley 380 fill operations for aquatic ecosystems of the Central Appalachians. Year in Ecology and 381 Conservation Biology. Annals of New York Academy of Science. 1223, 39-57. 382 Bernhardt, E.S., Lutz, B.D., King, R.S., Fay, J.P, Carter, C.E., Helton, A.M., Campagna, D., 383 Amos, J., 2012. How many mountains can we mine? Assessing the regional degradation 384 of Central Appalachian rivers by surface coal mining. Environmental Science and 385 Technology. 46, 8115-8122. 386 Bonta, J.V., Amerman, C.R., Dick, W.A., Hall, G.F., Harlukoweiz, T.J., Razem, A.C., 387 Smeck, N.E., 1992. Impact of surface coal mining on three Ohio watersheds - physical 388 conditions and ground-water hydrology. Water Resources Bulletin. 28, 577-596. 389 Burger, J., Graves, D., Angel, P., Davis, V., Zipper, C., 2005. The forestry reclamation 390 approach. Appalachian Regional Reforestation Initiative, US Office of Surface Mining. 391 Forest Reclamation Advisory Number 2. 392 Chambers, D.L., 2011. Increased conductivity affects corticosterone levels and prey 393 consumption in larval amphibians. Journal of Herpetology. 45, 219-223. 394 Connette, G.M., Price S.J., Dorcas M.E. 2011. Influence of abiotic factors on activity in a larval

salamander assemblage. Southeastern Naturalist, 10, 109-120.

- Davic, R.B., Welsh, H.H. Jr., 2004. On the ecological roles of salamanders. Annual Review
- of Ecology, Evolution and Systematics. 35, 405-434.
- 399 Dorazio, R.M., Royle, J.A., 2005. Estimating size and composition of biological communities
- by modeling the occurrence of species. Journal of the American Statistical Association.
- 401 100, 389-398.
- 402 Dorazio, R.M., Royle, J.A., Soderstrom, B., Glimskar, A., 2006. Estimating species richness
- and accumulation by modeling species occurrence and detectability. Ecology. 87: 842-
- 404 854.
- 405 Ferreri, C.P., Stauffer, J.R. Stecko, T.D., 2004. Evaluating Impacts of Mountain Top
- 406 Removal/Valley Fill Coal Mining on Stream Fish Populations, in: 2004 National Meeting
- of the American Society of Mining and Reclamation, pp. 576-592.
- 408 Ferrari, J.R., Lookingbill, T.R., McCormick, B., Townsend, P.A., Eshleman K.N., 2009.
- Surface mining and reclamation effects on flood response of watersheds in the central
- 410 Appalachian Plateau region. Water Resources Research. 45, W04407,
- 411 doi:10.1029/2008WR007109.
- 412 Ford, W.M., Chapman, B.R., Menzel, M.A., Odum, R.H., 2002. Stand age and habitat
- 413 influences on salamanders in Appalachian cove hardwood forests. Forest Ecology and
- 414 Management. 155, 131-141.
- 415 Fox, J.F. 2009. Identification of sediment sources in forested watersheds with surface coal
- 416 mining disturbance using carbon and nitrogen isotopes. Journal of the American Water
- 417 Resources Association. 45, 1273-1289.
- 418 Fritz, K.M., Fulton, S., Johnson, B.R., Barton, C.D., Jack, J.D., Word, D.A., Burke, R.A., 2010.

419	Structural and functional characteristics of natural and constructed channels draining a
420	reclaimed mountaintop removal and valley fill coal mine. Journal of the North American
421	Benthological Society. 29, 673-689.
422	Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences.
423	Statistical Science. 7, 457-472.
424	Gelman A., Hill, J., 2007. Data analysis using regression and multilevel/hierarchical models.
425	Cambridge University Press, Cambridge.
426	Greenberg, A.E., Clesceri, L.S., Eaton, A.D., 1992. Standard methods for the examination of
427	water and wastewater. 18th ed. American Public Health Association, Washington, DC.
428	Griffith, M.B., Norton, S.B., Alexander, L.C., Pollard, A.I., LeDuc, S.D., 2012. The effects of
429	mountaintop mines and valley fills on the physicochemical quality of stream ecosystems
430	in the central Appalachians: a review. Science of the Total Environment. 417/418, 1-12.
431	Hartman, K., Kaller, M., Howell, J., Sweka J., 2005. How much do valley fills influence
432	headwater streams? Hydrobiologia. 532, 91-102.
433	Hunt, S.D., Guzy, J.C., Price S.J., Halstead, B.J., Eskew, E.A., Dorcas, M.E., 2013. Responses
434	of riparian reptile communities to damming and urbanization. Biological Conservation.
435	157, 277-284.
436	Karraker, N.E., Gibbs, J.P., Vonesh, J.R. 2008. Impacts of road deicing salt on the demography
437	of vernal pool-breeding amphibians. Ecological Applications 18: 724-734.
438	Keitzer, S.C., Goforth R.R., 2013. Salamander diversity alters stream macroinvertebrate
439	community structure. Freshwater Biology. 58, 2114-2125.
440	Kéry, M., Royle, J.A., Plattner, M., Dorazio, R.M., 2009. Species richness and occupancy
441	estimation in communities subject to temporary emigration. Ecology. 90, 1279-1290.

- Kéry, M., 2010. Introduction to WinBUGS for Ecologists: A Bayesian Approach to Regression,
- 443 ANOVA, Mixed Models and Related Analyses. Academic Press, USA.
- Lindberg, T.T., Bernhardt, E.S., Bier, R., Helton, A.M., Merola, R.B., Wengosh, A.,
- Di Giulio, R.T., 2011. Cumulative impacts of mountaintop mining on an Appalachian
- watershed. Proceedings for the National Academy of Science of the United States of
- 447 America. 108, 20929-20934.
- Lunn, D., Spiegelhalter, D., Thomas, A., Best, N., 2009. The BUGS project: evolution, critique,
- and future directions. Statistics in Medicine. 28, 3049-3067.
- 450 Miller, J.E., Hess, G.R., Moorman, C.E., 2007. Southern two-lined salamanders in urbanizing
- watersheds. Urban Ecosystems. 10, 73-85.
- 452 Munshi-South, J., Zak, Y., Pehek, E., 2013. Conservation genetics of extremely isolated
- 453 urban populations of the northern dusky salamander (*Desmognathus fuscus*) in New York
- 454 City. PeerJ. 1, e64.
- Negley, T.L., Eshleman, K.N., 2006. Comparison of storm-flow responses of surface-mined
- and forested watersheds in the Appalachian Mountains, U.S.A. Hydrologic Processes. 20,
- 457 3467-3483.
- Orser, P.N., Shure, D.J., 1975. Population cycles and activity patterns of the Dusky salamander,
- Desmognathus fuscus fuscus. American Midland Naturalist, 93, 403-410.
- Palmer, M.A., Bernhardt, E.S., Schlesinger, W.H., Eshleman, K.N., Foufoula-Georgiou, E.,
- Hendryx, M.S., Lemly, A.D., Likens, G.E., Loucks, O.L., Power, M.E., White, P.S., Wilcock,
- 462 P.R., 2010. Mountaintop mining consequences. Science. 327, 148-149.
- Petranka, J.W., 1998. Salamanders of the United States and Canada. Smithsonian Institution
- 464 Press, Washinton, DC.

- 465 Phillippi, M.A., Boebinger, A., 1986. A vegetational analysis of three small watersheds in 466 Robinson Forest, Eastern Kentucky. Castanea. 51, 11-30. 467 Pond, G.J., Passmore, M.E., Borsuk, F.A., Reynolds, L., Rose, C.J., 2008. Downstream effects 468 of mountain top coal mining: comparing biological conditions using family- and genus-469 Level macroinvertebrate bioassessment tools. Journal of American Benthological 470 Society. 27, 717-737. 471 Pond, G.J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams 472 (Kentucky, USA). Hydrobiologia. 641, 185-201. 473 Pond, G.J., 2012. Biodiversity loss in Appalachian headwater streams (Kentucky, USA): 474 Plecoptera and Trichoptera communities. Hydrobiologia. 679, 97-117. 475 Price, S.J., Cecala, K.K., Browne, R.A., Dorcas, M.E., 2011. Effects of urbanization on 476 occupancy of stream salamanders. Conservation Biology. 25, 547-555. 477 Price, S.J., Browne, R.A., Dorcas, M.E., 2012. Evaluating the effects of urbanization on 478 salamander abundances using a before-after control-impact design. Freshwater Biology. 479 57, 193-203. 480 R Development Core Team, 2010. R: a language and environment for statistical computing. R
- Redmond, W.H., 1980. Notes on the distribution and ecology of the black mountain dusky
 salamander *Desmognathus welteri* Barbour (Amphibia: Plethodontidae) in Tennessee.
 Brimleyana. 4, 123-131.
 Royle, J.A., Nichols, J.D., 2003. Estimating abundance from repeated presence-absence data
 or point counts. Ecology 84, 777-790.

Foundation for Statistical Computing, Vienna, Austria.

- Sanzo, D., Hecnar, S.J., 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana
- 488 *sylvatica*). Environmental Pollution 140, 247-256.
- 489 Schorr, M.S., Dyson, M.C., Nelson, C.H., Van Horn, G.S, Collins, D.E., Richards, S.M., 2013.
- Effects of stream acidification on lotic salamander assemblages in a coal-mined
- watershed in the Cumberland Plateau, Journal of Freshwater Ecology. 28, 339-353.
- 492 Simmons, J.A., Currie, W.S., Eshleman, K.N., Kuers, K., Monteleone, S., Negley, J.L., Pohlad,
- 493 B.R., Thomas, C.L. 2008. Forest to reclaimed mine land use change leads to altered
- 494 ecosystem structure and function. Ecological Applications 18: 104-118.
- 495 Spotila, J.R. 1972. Role of temperature and water in the ecology of lungless salamanders.
- Ecological Monographs, 42, 95-125.
- 497 Sturtz, S., Ligges, U., Gelman, A., 2005. R2WinBUGS: a package for running WinBUGS
- from R. Journal of Statistical Software. 12, 1-16.
- Warren, M.L., Haag, W.R., 2005. Spatio-temporal patterns of the decline of freshwater
- mussels in the little South Fork Cumberland River, USA. Biodiversity and Conservation.
- 501 14, 1383-1400.
- Wood, P.B., Williams, J.M., 2013. Impact of valley fills on streamside salamanders in
- Southern West Virginia. Journal of Herpetology. 47, 119-125.
- Wood, P.B., Williams, J.M. 2013. Terrestrial salamander abundance on reclaimed mountaintop
- removal mines. Wildlife Society Bulletin, 37, 815-823.
- Zipkin, E.F., DeWan, A., Royle, J.A., 2009. Impacts of forest fragmentation on species
- 507 richness: a hierarchical approach to community modelling. Journal of Applied Ecology
- 508 46, 815-822.
- Zipper, C.E., Burger, J.A., Skousen, J.G., Angel, P.N., Barton, C.D., Davis, V., Franklin, J.A.,

2011. Restoring forests and associated ecosystem services on Appalachian coal surface
 mines. Environmental Management. 47, 751-765.

Table 1. Mean, 95% credible intervals (95% CI), and differences in environmental attributes at Mountain-top removal/valley fill and control (i.e., forest) intermittent streams located in the interior rugged section of the Cumberland Plateau in Breathitt and Knott Counties, Kentucky USA.

	MTR/VF		Control			
Variable	Mean	95% CI	Mean	95% CI	Difference	95% CI
Temperature (°C)	13.44	12.66-14.22	12.48	11.87-13.10	0.95	-0.03-(-1.95)
Forest cover (%)	0.25	0.12-0.38	0.997	0.993-0.999	-0.75	-0.88-(-0.62)
Specific Conductance (µS/cm)	1477.0	1103.0-1855.0	50.85	38.91-62.67	1427.0	1052.0-1804.0
Average stream width (cm)	122.6	88.33-156.7	130.6	102.3-159.1	-8.06	-52.47-35.54
Average stream depth (cm)	7.45	5.97-8.93	6.76	5.17-8.34	0.70	-1.47-2.85
Cover objects (#)	24.79	13.92-35.49	48.24	35.94-60.23	-23.45	-39.49-(-7.25)
Total organic carbon (mg/l)	7.97	2.63-13.47	2.76	1.86-3.66	5.204	-0.21-10.77
pH (H+)	6.08	5.35-6.82	5.71	5.34-6.09	0.3677	-0.45-1.18
SO ₄ (mg/l)	506.7	260.1-758.2	7.22	3.47-10.99	499.5	252.9-751.3
Ca (mg/l)	23.72	21.79-25.65	1.28	1.10-1.45	22.44	20.51-24.38
Mg (mg/l)	10.14	9.75-10.54	1.62	1.40-1.83	8.526	8.08-8.97
K (mg/l)	8.15	6.04-10.26	2.11	1.08-3.13	6.043	3.72-8.40
Na (mg/l)	8.46	6.34-10.61	2.55	0.87-4.28	5.917	3.20-8.63

Table 2. Summary of hyper-parameters for occupancy and detection covariates for salamanders observed at sites of mountaintop removal and natural second growth forest streams (controls) located in the interior rugged section of the Cumberland Plateau, Kentucky.

Community level hyper-parameter		Mean	Standard Deviation	95% Credible Interv	
*μ _{α1}	MTR/VF	-1.97	0.75	-3.31	-0.31
$*\sigma_{\alpha 1}$	MTR/VF	1.20	0.80	0.09	3.15
$\mu_{\beta 1}$	Julian date	-0.05	0.21	-0.47	0.38
$\sigma_{\beta 1}$	Julian date	0.30	0.26	0.01	0.96
$\mu_{\beta 2}$	Julian date squared	0.08	0.20	-0.32	0.49
$\sigma_{\beta 2}$	Julian date squared	0.29	0.25	0.01	0.94
$\mu_{\beta 3}$	Water temperature	0.13	0.20	-0.27	0.52
$\sigma_{\beta 3}$	Water temperature	0.23	0.22	0.01	0.81
$\mu_{\beta4}$	Date of last precipitation	-0.07	0.20	-0.48	0.33
σ _{β4}	Date of last precipitation	0.28	0.25	0.01	0.93

^{*} The symbol μ indicates mean community response, while σ indicates the standard deviation in

516

517

518

the response to the covariate across species.

Figure 1. Mean estimated occupancy probabilities (with 95% credible intervals) of stream
salamanders detected in 10 m sampling transects at streams impacted by mountaintop removal
and valley fill (MTR/VF) and streams within second growth forest (control). All study sites
were located in the interior rugged section of the Cumberland Plateau, Kentucky, USA.