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Summary. Recent developments in the Cormack–Jolly–Seber (CJS) model for analyzing capture–recapture
data have focused on allowing the capture and survival rates to vary between individuals. Several methods
have been developed in which capture and survival are functions of auxiliary variables that may be discrete,
constant over time, or apply to the population as a whole, but the problem has not been solved for continuous
covariates that vary with both time and individual. This article proposes a new method to handle such
covariates by modeling changes over time via a diffusion process and using logistic functions to link the
variable to the CJS capture and survival rates. Bayesian methods are used to estimate the model parameters.
The method is applied to study the effect of body mass on the survival of the North American meadow
vole, Microtus pennsylvanicus.
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1. Introduction
Capture–recapture methods have been used by ecologists to
study different animal populations that are difficult to enu-
merate and follow over time. After trapping, marking, and re-
leasing individuals on one or more capture occasions, inference
about the population is obtained by comparing the numbers
of marked and unmarked individuals captured at subsequent
times. The quantities of interest in many capture–recapture
experiments are the animals’ survival rates.

The basis of most models developed to study survival from
capture–recapture data is the Cormack–Jolly–Seber (CJS)
model (Cormack, 1964; Jolly, 1965; Seber, 1965). In its sim-
plest form, the CJS model assigns probabilities to each possi-
ble capture history in terms of two sets of parameters. These
are the capture probabilities, the probabilities that animals
alive at one capture occasion are actually captured, and the
survival probabilities, the probabilities that animals alive at
one capture occasion are still alive at the next. Although these
probabilities are allowed to change over time, the CJS model
imposes the assumption that the capture and survival prob-
abilities at a single capture occasion are the same for all an-
imals in the population. Other assumptions of the model are
that capture occasions are instantaneous events, that no ani-
mals are killed in the capture process, that any emigration is
permanent, and that individuals behave independently of one
another (Williams, Nichols, and Conroy, 2002, p. 422).

In recent years, statisticians and ecologists have developed
different extensions of the CJS model that allow the capture
and survival rates to vary as functions of environmental and
individual covariates. A complete review of these methods

is given by Pollock (2002), though in general there are two
competing strategies: the use of multistate models and the
use of generalized linear models (GLM).

In a multistate model, the capture and survival rates are
allowed to vary independently between animals in a finite
number of states defined by one or more factors. The basic
multistate model is the Arnason–Schwarz model (Arnason,
1973; Schwarz, Schweigert, and Arnason, 1993), which was
originally developed to allow the rates to change by geo-
graphic location, though it may be used with any discrete
covariate. The main advantage of a multistate model is that
it can incorporate covariates that are both time dependent
and unique to each individual. This is accomplished by us-
ing a Markov chain to describe the movement of individuals
between states as well as to account for unobserved values of
the covariate in the model likelihood. A disadvantage is that
multistate models cannot incorporate continuous covariates.
While some have used the multistate approach simply by cat-
egorizing continuous covariates (e.g., Nichols et al., 1992), this
may lead to a loss of information that obscures the underlying
relationship between the covariate and survival.

In the GLM-based approach, the survival and capture rates
depend on linear combinations of the covariates through pre-
specified link functions. This strategy is described by Lebreton
et al. (1992) who stress the logistic link because it satisfies
the constraint that the estimated probabilities lie between
0 and 1. The clear advantage of this model over the multistate
model is that both continuous and discrete covariates may be
accounted for in the linear predictor. Unfortunately, current
models cannot include time-dependent covariates because of
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the difficulties that arise when an individual is not captured
and the value of the covariate is not observed. To include such
covariates in the GLM approach would require some way of
modeling the distribution of the missing values of the covari-
ate on each capture occasion (Pollock, 2002). This is exactly
what we address.

In this article, we introduce a stochastic model to describe
changes in a continuous covariate over time that is based on
the Wiener process. This model is then used to account for
the unobserved covariate values in the model likelihood. We
use logistic functions to incorporate information from the co-
variate into the CJS model and a Bayesian approach based
on the Metropolis–Hastings (MH) algorithm to estimate the
model parameters. As an example, the model is applied to
study the effect of body mass on the survival of the North
American meadow vole, Microtus pennsylvanicus.

2. Methods
2.1 Basic Notation
Study parameters

k = number of capture occasions
ts = time of capture occasion s, s = 1, . . . , k

Δs = ts+1 − ts time between capture occasions s and
s + 1

n = number of animals captured during the experiment

Observed data

ωis =

{
1 if individual i is captured at occasion s
0 otherwise

ωi = (ωi1, . . . ,ωik) capture history for individual i
zis = covariate for individual i at time s (note that zis is

missing if ωis = 0)

Summary variables
ai = first occasion that individual i is captured
di = last occasion that individual i is part of the study

population (this is unobserved but known to be not
less than the last time individual i was captured)

CJS model parameters
pis = p(zis) probability that animal i with covariate zis alive

at capture occasion s is captured
φis = φ(zis) probability that animal i with covariate zis in

the study population at occasion s is still part of the
population at occasion s + 1

2.2 Basic Cormack–Jolly–Seber Model
The original CJS model is based on the assumption that the
capture and survival rates at each capture occasion are the
same for all animals. That is,

φis = φs and pis = ps.

Because it is impossible to know exactly when an animal
entered the population, either by birth or immigration, the
model assigns probabilities to each capture occasion condi-
tional upon the animal’s first release. For example, the prob-
ability that an animal is captured at times 2 and 4 in a study
with k = 5 (i.e.,ωi = (0, 1, 0, 1, 0)) is modeled as

φ2(1 − p3)φ3p4(φ4(1 − p5) + (1 − φ4)).

The likelihood is then produced by multiplying these contri-
butions for each animal. Estimates of the survival and capture

rates may then be produced using a variety of methods in-
cluding computing maximum likelihood estimates analytically
(Williams et al., 2002, p. 424) or by iterative methods like
the expectation-maximization (EM) algorithm (Van Deusen,
2002), and through Bayesian inference (Poole, 2002).

2.3 Modeling Continuous Covariates
To include the effects of a time-dependent covariate, it is nec-
essary to develop a model that describes the distribution of
the covariate when an animal is not captured and the covari-
ate is not observed. The motivating idea behind our model is
that animals living in the same area should react in a similar
manner to changes in the environment. Thus, differences in
the value of the covariate between consecutive capture occa-
sions should be similar for all individuals in the population.
As an illustration, consider the body masses of animals form-
ing a population living in a single region. In times when food
is plentiful there will be little competition between animals
and we would expect them all to gain mass. When food is
scarce and competition increases, we would expect them to
lose mass. Of course, there will be some individual variation
due to unmeasured factors and random chance.

Our model begins with three assumptions about the be-
havior of the covariate over time:

1. Differences in the value of the covariate between any two
times are normally distributed across the population.

2. The mean rate of change between capture occasions s
and s + 1 is the same for all animals, denoted by μs.

3. The rate of variance in the process is a constant over all
time, denoted by σ2.

In continuous time these conditions are satisfied by a
Wiener process with time-dependent drift, μ(t), such that∫ ts+1

ts
μ(t) dt = μs. Denoting the process by X(t), t ≥ 0, it is

defined by three properties:

(i) X(0) = 0
(ii) for any t1 < t2 between the first and last capture occa-

sions X(t2) −X(t1) ∼ N(
∫ t2

t1
μ(t) dt, σ2(t2 − t1))

(iii) for any t1 < t2 < t3 < t4 between the first and last cap-
ture occasions X(t2) − X(t1) and X(t4) − X(t3) are
independent.

A full description of the theory of continuous-time stochastic
processes including the Wiener process is given by Cox and
Miller (1965, p. 203).

To describe the distribution of the covariate for the ith in-
dividual at the sth capture occasion we restrict the model
to the discrete capture occasions and define a new stochastic
process Zis = Ziai

+ X(ts), s = 1, . . . , k. To find the distribu-
tion of Zis conditional on Ziai

for s > ai , the term Zis can
be written as the sum of the initial value and the differences
between successive capture occasions,

Zi,s+1 = Ziai
+

s∑
r=ai

(Zi,r+1 − Zir)

= Ziai
+

s∑
r=ai

(X(tr+1) −X(tr)).

The properties above then imply that the Z i,s+1 given Ziai

is the sum of independent normal terms, and further that
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Zi,s+1|Ziai
, . . . , Zi1 ∼ Zi,s+1|Zis. Thus, Zi,ai+1, . . . , Zik form a

Markov chain with transition kernel:

Zi,s+1 |Zis = zis ∼ N
(
zis + μsΔs, σ

2Δs

)
. (1)

In essence, given one value of the covariate, the next value
is normally distributed with mean proportional to the rate
of drift between the capture occasions and the difference in
time, and variance proportional to the difference in time. The
density of the distribution in equation (1) will be denoted by
f(· | ·).

The final concerns in the model are the links between the
covariate values and the capture and survival probabilities.
While many standard link functions may be used, we have
chosen to use logistic functions. To accommodate variations in
Δs, we model the survival probability per unit time assuming
that survival between capture occasions s and s + 1 depends
only on the value zis . Survival and capture probabilities as
functions of the covariate are

φis =

[
eβ0+β1zis

1 + eβ0+β1zis

]Δs

pis =
eγ0+γ1zis

1 + eγ0+γ1zis
. (2)

The parameters β = (β0, β1) and γ = (γ0, γ1) govern the
behavior of the survival and capture curves and are of pri-
mary interest in understanding the population dynamics. In
particular, if β1 �= 0 then the survival rate is dependent on
the covariate and if γ1 �= 0 then the capture rate is dependent
on the covariate.

2.4 Parameter Estimation
Parameter estimation for this model is complicated by both
missing predictors (the unobserved covariates) and missing
response values (the unknown survival information). This dis-
tinguishes the problem from similar work like that of Ibrahim,
Chen, and Lipsitz (1999) who describe a Monte Carlo EM al-
gorithm for estimating parameters in general regression mod-
els with missing covariates. To obtain parameter estimates
in spite of the missing data, we perform Bayesian inference
based on the componentwise MH algorithm.

For simplicity, we assume equally spaced capture occasions
such that Δs = 1 for all s. In this case, the distribution in
equation (1) simplifies

Zi,s+1 |Zis = zs ∼ N
(
zis + μs, σ

2
)
,

where μs and σ2 now represent the mean and variance of the
difference in the covariate per capture occasion. The survival
probability, equation (2), becomes

φis =
eβ0+β1zis

1 + eβ0+β1zis
,

and can be interpreted as the probability of survival from
one occasion to the next. In the general case where Δs varies
the mechanics of parameter estimation are the same, but the
calculations required in the MH algorithm are slightly more
complex. Also, when the Δs is not constant, the drift means,
drift variance, and survival probabilities should be interpreted
as effects per unit time and not per capture occasion.

We begin parameter estimation by defining the complete
data likelihood (CDL) for the model. The CDL is formed as

if all zis and di were observed, thus removing the integrals
needed to account for all possible values of the unobserved
covariates in the usual likelihood. Letting x denote the com-
pleted data and Θ the entire set of parameters, the CDL is

L(Θ |x) ∝
n∏
i=1

[(
k∏

s=ai+1

f(zis | zi,s−1)

)(
di−1∏
s=ai

φis

)

· (1 − φidi)
I[di<k]

(
di∏

s=ai+1

pωis
is

(
1 − pωis

is

))]
.

(3)

Note that this expression is essentially the same as the com-
plete data likelihood used in the EM algorithm described by
Van Deusen (2002). The sole difference is that the first prod-
uct in (3) includes the conditional density of zis for all s >
ai , while the corresponding product in Van Deusen (2002) in-
cludes only terms up to di . It may seem unusual to include
covariates at times after di , but extending the sum simplifies
the generation of di on each MH iteration and does not affect
the final estimates.

To construct the posterior distribution, one must also spec-
ify the prior distribution of the parameters. In the example
that follows, the prior distributions for each parameter were
assumed to be independent and were chosen to simplify the
calculations. More descriptive priors should be used when in-
formation is available. For the drift means and variance, we
used conjugate prior distributions that are the normal and the
inverse gamma, respectively. Improper flat priors were used
for γ and β. Assuming constant mean and variance for the
priors of each μs, denoted by μ0 and σ2

μ, and denoting the
shape and scale parameters of the prior for σ2 as ασ, βσ,
the prior density for Θ is

π(Θ) = exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−

k−1∑
s=1

(μs − μ0)
2

2σ2
μ

− 1

βσσ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

·
(

1

σ2

)ασ−1

. (4)

The posterior density is proportional to the product of the
expressions in (3) and (4).

Because of the complexity of the posterior distribution, es-
timates of the parameters were generated through the com-
ponentwise MH algorithm (Chib and Greenberg, 1995). De-
tails of the algorithm used in the example are provided in the
Appendix.

3. Example
The meadow vole or field mouse, Microtus pennsylvanicus, is
a small rodent that forms colonies in grasslands, wet mead-
ows, fields, and swamps throughout Canada and the north-
ern United States. Adult voles measure between 14.0 and
19.5 cm and weigh between 20 and 70 g (Whitaker, 1997,
p. 640), though there is extensive variation in size across the
voles’ range (Banfield, 1974, p. 209). The meadow vole breeds
from early spring to late fall, occasionally even throughout
the winter, and is the most prolific North American mam-
mal (Hamilton and Whitaker, 1979, p. 218). The maximum
lifespan of the meadow vole is thought to be 16 months, but
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juvenile mortality is high and the vast majority of individuals
do not reach maturity (Banfield, 1974, p. 210).

Previous studies of meadow vole weight dynamics have
reached different conclusions about the relationship between
mass and survival. An early study by Hamilton (1941) showed
that the mean mass of voles declined during the winter, which
he attributed to selective mortality of larger voles during the
fall. More recent studies of voles in Minnesota and Mani-
toba found similar seasonal trends in the distribution of body
mass, but suggested that this was due to decreases in individ-
ual mass and immigration of smaller voles to the study area
during the winter months (Brown, 1973; Iverson and Turner,
1974). Iverson and Turner (1974) further conclude that mor-
tality may be higher among smaller voles at certain times of
the year.

Data for our analysis were gathered at the Patuxent
Wildlife Center in Laurel, Maryland, from fall 1981 through
spring 1982. The voles were captured and weighed on four pri-
mary occasions consisting of approximately 5 days and sepa-
rated by about 1 month (Nichols et al., 1992). If an individ-
ual was captured more than once during a primary period,
only the first weight was recorded. Several analyses of these
data using multistate models were described by Nichols et al.
(1992). Here we study the effect of body mass on survival by
fitting the model in Section 2 to a subset of the data and
provide results of a new multistate model for comparison.

The data collected at Patuxent contained records for 515
voles, though less than half were used in our analysis. First,
only 215 voles were observed prior to the fourth occasion and
contributed to the model likelihood in equation (3). Further,
one of the key assumptions in our model is that the changes in
the covariate between successive capture occasions have the
same distribution for all animals. Because this is unlikely to be
satisfied when considering changes in body mass for both im-
mature and mature animals, we removed all observations for
immature voles, defined as those weighing 22 g or less (Nichols
et al., 1992). It was possible to remove only the observations
where an animal’s mass was below 22 g, rather than excluding
the entire record, because no vole was observed with a mass
greater than 22 g and subsequently less than or equal to 22 g.
One other individual with a reported mass of 0 g on the fi-
nal capture occasion was removed entirely. The final data set
contained a total of 450 captures for 199 voles.

To compute parameter estimates, the MH algorithm ran
for 1,000,000 iterations and the final 200,000 were retained
for calculating point estimates and credible intervals. Values
of the hyper-parameters in (4) used in this application were
μ0 = 0, σ2

μ = 100, ασ = 0.001, and βσ = 1000. Convergence
of the algorithm was assessed by repeating this procedure ten
times starting with a wide range of initial values and com-
paring the chains according to the burn-in period and final
parameter estimates (Carlin and Louis, 1996, p. 196). Point
estimates and credible intervals computed from all ten chains
were similar for all parameters, and trace plots of the simu-
lated parameter values along with the associated Gelman and
Rubin diagnostics suggested that any effects of the initial val-
ues were lost within the first 5000 iterations.

Estimates computed from the first MH run are presented
in Table 1. The primary conclusion is that the data showed no
significant effect of body mass on either the capture or survival

Table 1
Parameter estimates and 95% credible intervals for the

parameters of the model of meadow vole survival generated
using continuous body mass as a covariate

Parameter Estimate

μ1 −0.56 (−1.90, 0.79)
μ2 0.11 (−1.00, 1.22)
μ3 1.80 (0.82, 2.77)
σ2 26.61 (22.31, 31.84)
β1 1.39 (0.30, 2.57)
β2 0.00 (−0.03, 0.02)
γ1 2.02 (−0.97, 5.63)
γ2 0.01 (−0.07, 0.09)

rates. However, the results did show a significant increase of
body mass of 1.80 g on average between capture occasions
3 and 4. As described in Nichols et al. (1992), the final cap-
ture event combines several capture occasions through the late
winter and spring of 1982. These results suggest that the body
mass of adult meadow voles at Patuxent remained constant
through the fall of 1981 and early winter of 1982, and then
increased in the early spring. Note, however, the relatively
large variance, σ̂2 = 26.6 g2, which suggests that this behav-
ior varied considerably between individual voles. Plots of the
estimated capture and survival functions with 95% credible
envelopes are shown in Figure 1. These suggest that values
near φit = 0.8 and pit = 0.9 can be fit for all individuals.

For comparison, we also constructed a multistate model
of the data. Following Nichols et al. (1992) the adult voles
were divided into three distinct mass categories: (B) 22–33 g,
(C) 34–45 g, and (D) >45 g (in Nichols et al., 1992, class A
refers to the immature animals that were excluded from this
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Figure 1. Estimated survival (a) and capture (b) rates as
functions of body mass (grams) for the meadow vole, Microtus
pennsylvanicus. For the model using continuous body mass
the estimated rates are indicated by the solid lines, and the
95% credible intervals by the broken lines. Points represent
the estimates from the multistate model with 95% confidence
intervals for each of the three mass classes.
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analysis). To match the assumptions of the proposed contin-
uous covariate model, the parameters controlling transitions
between the classes were allowed to vary over time while the
capture and survival rates for each class were held constant.
Several transitions were not observed in the data set and in
these cases the associated parameter was fixed to 0 to gen-
erate an identifiable model. Estimates of the remaining 17
parameters (Table 2) were computed using program MARK
(White and Burnham, 1999).

Estimates of the capture and survival rates for the multi-
state model match very well with the results of the previous
model (Figure 1). Once again, there is no evidence of an effect
of body mass on either the capture or survival rates. Further,
for both the survival and capture rates the 95% confidence in-
tervals produced from the multistate model overlap the 95%
credible envelopes from the previous model over the entire
range of body mass.

The results from the proposed model also agree with previ-
ously published studies of the body mass and survival of Mi-
crotus pennsylvanicus. Estimates of the survival probabilities
for the original Patuxent data set are not provided in Nichols
et al. (1992), but can be derived from results given. For the
model assuming equal transition rates over time (Model II),
the estimated survival probabilities are near 0.8 for every
weight class and do not significantly differ from each other.
This is consistent with our findings. Moreover, the body mass
dynamics suggested by our model match well with the con-
clusions of Brown (1973) who describes a slight decrease in
voles’ weight in the fall, steady weight through the winter,
and an increase in the spring. Plots from Iverson and Turner
(1974) suggest a similar pattern, though the observed changes
are much more dramatic.

Table 2
Maximum likelihood estimates and 95% confidence intervals of

the parameters for the multistate model of meadow vole
survival. Parameters φj and pj denote the survival and

capture rates for weight class j; rjlt denotes the transition rate
from state j to l at time t. Rates corresponding to transitions

that were not observed in the data are not included.

Parameter Estimate

φB 0.82 (0.73, 0.88)
φC 0.73 (0.64, 0.80)
φD 0.78 (0.68, 0.86)

pB 0.96 (0.73, 1.00)
pC 0.89 (0.75, 0.95)
pD 0.95 (0.73, 0.99)

rBC1 0.85 (0.40, 0.98)
rBC2 0.21 (0.10, 0.40)
rBC3 0.33 (0.22, 0.46)
rBD3 0.04 (0.01, 0.13)
rCB3 0.17 (0.08, 0.33)
rCD1 0.13 (0.04, 0.37)
rCD2 0.09 (0.03, 0.27)
rCD3 0.10 (0.04, 0.26)
rDC1 0.19 (0.08, 0.39)
rDC2 0.37 (0.21, 0.57)
rDC3 0.28 (0.11, 0.55)

However, the new method does have clear advantages
over each of the other approaches. Though the studies of
Brown (1973) and Iverson and Turner (1974) are both
straightforward capture–recapture experiments, neither uses
capture–recapture methodology and this may have systemat-
ically biased their results. Instead, Brown (1973) subjectively
combines observations from different animals observed on dif-
ferent occasions to create a “composite picture of growth”
while Iverson and Turner (1974) draw conclusions by com-
paring the mean body mass of animals captured on each
occasion. Both studies ignore possible effects of the capture
mechanism. The primary advantage of our model over the
multistate model is the inclusion of time-dependent, continu-
ous covariates. This is discussed further in Section 4. Another
drawback of the multistate model is that it may be difficult to
draw conclusions about the changes in a covariate based on
the estimated transition rates for different states. For exam-
ple, in the multistate model we fit to the meadow vole data
only two of the transition rates show significant changes over
the four occasions (Table 2). Both of these represent transi-
tions that occur only between the third and fourth capture
occasion, though one is an increase in mass (from state B to
D) while the other is a decrease in mass (from state C to
B). This makes it hard to derive conclusions about general
trends in the voles’ body mass. Moreover, the standard errors
of both estimates are very high because very few individuals
are observed making these specific transitions (n = 6 and n
= 2, respectively). In contrast, our model provides an exact
distribution for the difference in the covariate on each capture
occasion.

4. Discussion
This article introduces a new method that extends the CJS
model to incorporate the effects of covariates that are contin-
uous, individual, and time dependent. This is accomplished
using a Markov chain to model difference in the covariate over
time, similar to the way the multistate model describes move-
ments of animals between discrete states. However, the two
models make very different assumptions regarding both the
behavior of the covariate and its relationship to the capture
and survival rates. We conclude by comparing these assump-
tions, and by commenting on the limitations of the proposed
model and suggesting ways these might be avoided in future
applications.

One of the main advantages of the multistate model is that
it places no constraints on the model parameters. That is,
the capture, survival, and transition rates for animals in each
state vary independently of the rates for animals in the other
states. For researchers who are studying systems about which
little is known or who stress the need to remain objective, this
may seem very attractive. The major disadvantage is that the
multistate model makes the implicit assumption that animals
behave exactly alike if they belong to the same state and not
alike if they belong to different states. For example, the mul-
tistate model used in the analysis of Section 3 implies that if
a vole weighs 44 g then (a) it behaves exactly like all others
weighing between 35 and 44 g at that time, and (b) no in-
formation about the individual can be drawn from the voles
weighing 45 g or more. Discretizing a continuous variable can
also lead to serious problems with model fit. If the variable
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is divided into too few discrete states then the assumption
that animals in the same state behave alike may not be ap-
propriate. This will increase the variability of the parameter
estimates and may hide the true relationships in the system.
On the other hand, the number of parameters grows expo-
nentially as the number of states increases and can quickly
exhaust the information in the data. A model with a large
number of states may contain unidentifiable parameters or be
too complex to interpret. In Section 3, the multistate model
required 11 parameters to describe changes in the voles’ body
masses over time while the proposed model required only 4.

In contrast to the multistate model, the proposed model for
continuous covariates imposes constraints on the distribution
of the covariate and on the functional form of the relationships
between the covariate and the capture and survival rates, but
allows the capture and survival rates to change continuously.
The first assumption of the model presented in Section 2 is
that the change in the covariate between two capture occa-
sions is normally distributed with constant variance and the
same mean for all individuals. This is motivated by the idea
that all animals in a population will react in a similar man-
ner to environmental pressures. If there is reason to believe
that different subpopulations behave differently, as in the ex-
pected difference between juveniles and adults in Section 3,
the model might be extended by allowing different means
and/or variances for different subpopulations. The simplest
extension would model two distinct means, μs = μs0 + μs1δ,
where δ is an indicator variable that distinguishes two sub-
groups. More complicated models might use many different
means, if the covariate depended on location for example, or
even a continuous function, μs = gs(·), where gs(·) may de-
pend on the covariate itself or on other auxiliary variables.
Different distributions could also be used in cases where nor-
mality cannot be assumed and biological considerations sug-
gest another form.

The second assumption of our model is that the relation-
ships between the survival and capture rates and the covariate
can be described by simple link functions that are constant
over time. We have used the logistic link in our work so far
because of its convenience in modeling probabilities, but this
choice further imposes that the relationships must be mono-
tonic. In future applications, we hope to explore the possibil-
ity of using splines or other piecewise functions to allow more
flexibility in the relationships. The assumption of time homo-
geneity is also likely to be restrictive in many applications.
Indeed, in their analysis of the Patuxent meadow vole data,
Nichols et al. (1992) show that a multistate model with time-
specific parameters provides significant improvement over a
model with fixed parameters. Complete flexibility over time
could be achieved in the proposed model using separate cap-
ture and survival functions on each capture occasion, though
this would introduce a large number of new parameters. In-
stead, we propose a solution based on the proportional haz-
ards model used in survival analysis (Cox, 1972). This model
allows survival rates to change over time under the assump-
tion that the relative effect of different values of the covariate
is constant and introduces only one extra parameter for each
capture occasion. We anticipate that both survival and cap-
ture rates could be modeled in a similar manner.

An important practical difference between the multistate
model and the proposed model is that estimation becomes

much more difficult when considering a continuous covariate.
The likelihood for the proposed model requires integrals to
account for every missing covariate value, and maximum like-
lihood estimates cannot be found analytically. While several
classical methods exist for estimating parameters in problems
with large amounts of missing data, e.g., the EM algorithm
and its derivatives, we recommend Bayesian estimation be-
cause of its natural view of missing data. Bayesian inference
does not differentiate between missing data and parameters,
both of which are considered unobserved random variables,
and so both can be handled in the same framework. This
is very appealing for problems with large amounts of missing
data. Other researchers have already begun promoting the use
of Bayesian estimation for ecological statistics and capture–
recapture experiments (see e.g., Dupuis, 1995; Brooks, Catch-
pole, and Morgan, 2000; Poole, 2002).

We believe that the model presented here provides an im-
portant alternative to other models that impose constraints
upon either the time dependence, continuity, or individuality
of the covariate. We hope that other researchers will apply the
proposed model in their own research and work to develop
their own variations. To assist this, the source code from C

programs implementing the MH algorithm and the complete
data set for the meadow vole example are available at the
Biometrics website: http://www.tibs.org.
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Appendix

Details of the Metropolis–Hastings Algorithm
The MH algorithm generates a Markov chain by iteratively
simulating values for the unknown quantities from a prespec-
ified proposal distribution. These values are accepted with a
certain probability and become the next state in the chain,
or else they are rejected and the state remains the same. The
acceptance probability for a simulated value depends on the
likelihood function, the proposal distribution, and the chain’s
current state. Under general conditions, the distribution of the
simulated values converges to the joint posterior distribution
of the parameters and missing data, such that values from
the tail of the chain can be treated as a sample from the pos-
terior (Chib and Greenberg, 1995). The componentwise (or
single-component) MH algorithm is a variation in which the
unknown quantities are divided into low dimensional sets, and
each set is updated in sequence at every iteration of the chain.
This method greatly simplifies the computation when there
are a large number of unknown parameters or missing data
points. Values from the resulting chain still converge in distri-
bution to the posterior (Gilks, Richardson, and Spiegelhalter,
1996).

The full conditional distributions for the parameters in the
model of Section 2 can be derived from the product of equa-
tions (3) and (4). The proposal distributions used in the ex-
ample are given below. In the proposal distribution for the
unknown quantity θ, the quantity’s current value is denoted
as θ and the proposed value as θ′.

1. Missing covariates (zis)

z′is |x,Θ ∼
{

N
(

(zi,s−1 + μs−1) + (zi,s+1 − μs)
2

,
σ2

2

)
s < k

N
(
zi,s−1 + μs−1, σ

2
)

s = k

2. Missing survival information (di )

P (d′i = s |x,Θ) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 s < b

1 −φib s = b

s∏
r=b+1

[φi,r− 1(1−pir )] · (1−φis)I [s<k] b < s ≤ k

3. Drift means (μs)

μ′
s |x,Θ ∼ N

⎛
⎜⎜⎜⎜⎝

n∑
i=1

I[ai ≥ s](zi,s+1 − zis) +
σ2

σ2
μ

μs0

n∑
i=1

I[ai ≥ s] +
σ2

σ2
μ

,

σ2

n∑
i=1

I[ai ≥ s] +
σ2

σ2
μ

⎞
⎟⎟⎟⎟⎠
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4. Drift variance (σ2)

σ2 ′ |x,Θ ∼ IG

⎛
⎜⎜⎜⎜⎝

n∑
i=1

(k − ai)

2
+ ασ,

⎛
⎜⎜⎜⎜⎜⎝

1

βσ

+

n∑
i=1

k−1∑
r=ai

(zi,r+1 − zir − μr)
2

2

⎞
⎟⎟⎟⎟⎟⎠

−1⎞
⎟⎟⎟⎟⎟⎠

5. Coefficients of the survival function (β)
Both elements sampled simultaneously from a bivariate
normal distribution

β′ |β ∼ N
(
β, Iβ(β,x)−1

)
,

where Iβ(β, x) is the observed information matrix for
β computed given the current parameters and complete
data.

6. Coefficients of the capture function (γ)
Both elements sampled simultaneously from a bivariate
normal distribution

γ ′ | γ ∼ N
(
γ, Iγ(γ,x)−1

)
,

where Iγ(γ, x) is the observed information matrix for
γ computed given the current parameters and complete
data.


